Noyades – vers des avancées ?

P Michelet – Urgences Timone 2

REVIEW ARTICLE

CURRENT CONCEPTS

Drowning

David Szpilman, M.D., Joost J.L.M. Bierens, M.D., Ph.D., Anthony J. Handley, M.D., and James P. Orlowski, M.D.

Une Revue récente

Constatations plus alarmantes encore!

500 000 décès (meilleur recensement)

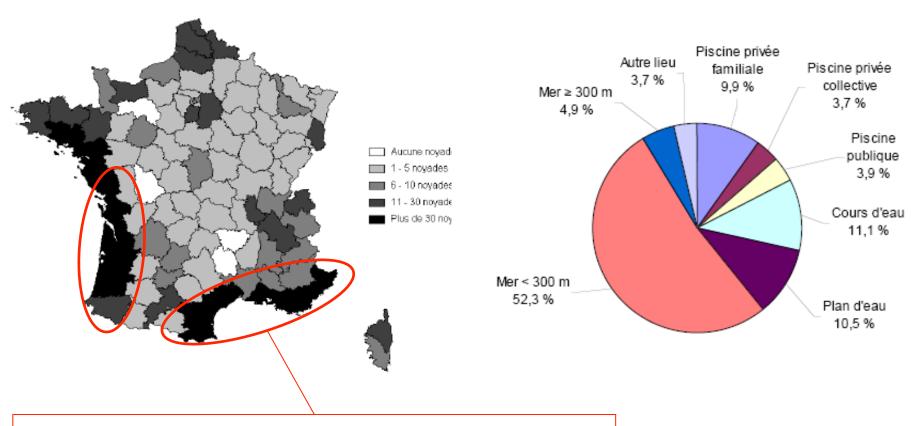
Statistiques actuelles n'incluant pas les catastrophes naturelles et les naufrages!

Plus de 200 M de \$ aux USA, 250 M de \$ au Brésil

Épidémiologie différente entre les pays « riches » et les autres

Différences épidémiologiques

- Pays défavorisés
 - Les enfants
 - La pauvreté
 - Le sexe masculin
 - Le défaut de scolarisation
 - La ruralité
 - L'alcool


- Pays riches
 - De en les enfants
 - L'Homme > 55 ans
 - Pathologies associés
 - Les conduites à risque
 - L'alcool
 - La ruralité

Drowning, Current Concepts, Szpilman D et al. N Engl J Med 2012; 366:2012-10

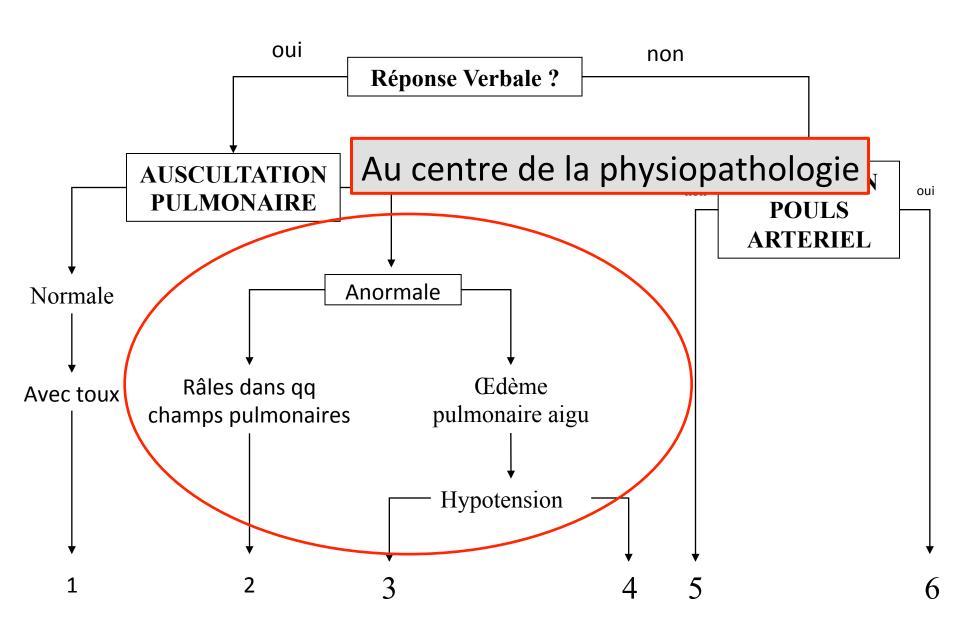
La situation française

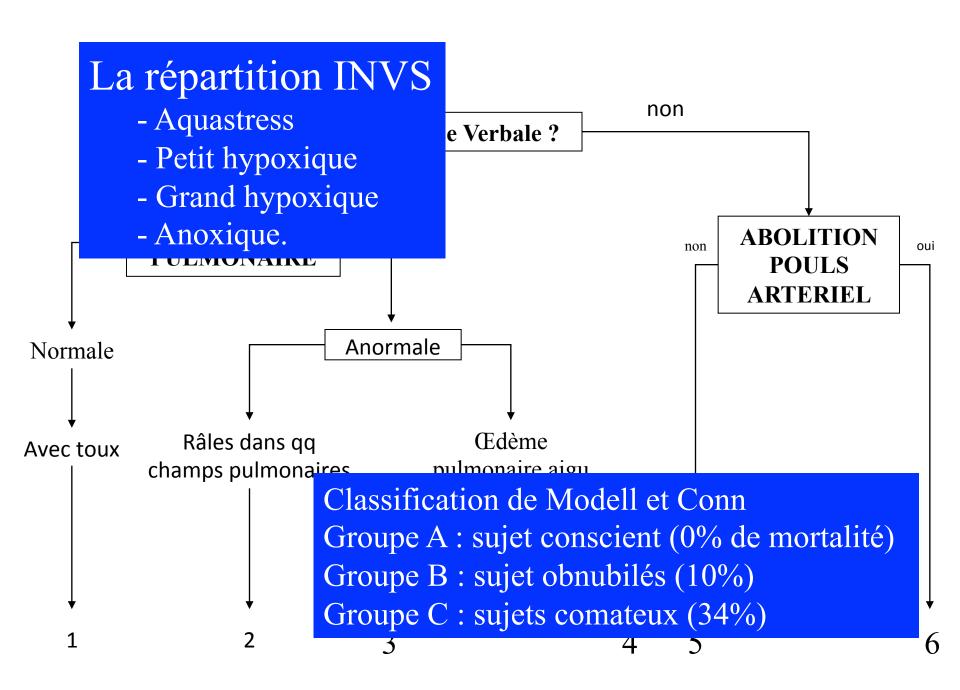
- Une évaluation épidémiologique bien menée par l'INVES
 - Évaluations en 2009, 2006, 2003, 2004
- Un nombre de noyade stable
 - 1366 en 2009 contre 1207, 1163, 1154
- Un taux de mortalité qui ne diminue pas
 - 34% en 2009 contre 33, 32, 38%
- Mais aucune donnée médicale précise

La situation française

440 noyades chaque année, 23% de mortalité

Source: INVES 2009


Définition – vers la simplification


La noyade:

Etat résultant d'une insuffisance respiratoire provoquée par la submersion ou l'immersion en milieu liquide

- Défaillance respiratoire aigüe
 - Elément physiopathologique majeur responsable d' une hypoxémie
 - Défaillances viscérales secondaires à l'hypoxémie
 - Arrêt cardiaque
 - Coma et encéphalopathie post-anoxique
 - Défaillance rénale
 - Défaillance hématologique (CIVD)

Algorithme de Szpilman

Physiopathologie – encore méconnue

- Insuffisance respiratoire aiguë : OK
 - Ingestion >> Inhalation
- Insuffisance cardio circulatoire
 - Finalité = Arrêt Cardiaque Hypoxique
 - Mais avant ??
 - Tachycardie : OK
 - Décharge catécholaminergique ??

Physiopathologie

- Cardio circulatoire
 - Décharge catécholaminergique puis vasoplégie
- Respiratoire
 - Œdème lésionnel (?)
 - Pneumopathie d'inhalation
- Métabolique
 - Acidose, hémodilution, Hypernatrémie

Données recueillies auprès de 130 dossiers de noyés

Données biologiques et métaboliques à l'admission

Natrémie (mmol/L)	144 ± 5.6	
Kaliémie (mmol/L)	4.1 ± 0.6	
Lactatémie (mmol/L)	5.3 ± 5.8	
Glycémie (mmol/L)	10 ± 7.2	
Protidémie (g/L)	69.1 ± 10.6	
Créatininémie (mmol/L)	102.6 ± 52	
Urémie (mmol/l) 6.7 ± 3.2		

	Na	K	pН
Eau de mer (n= 126)	145 ± 5	4 ± 0.6	7,23±0,13
Eau douce (n=23)	132 ± 4	$4,3 \pm 0,6$	7,13±0,19

Drowning

David Szpilman, M.D., Joost J.L.M. Bierens, M.D., Ph.D., Anthony J. Handley, M.D., and James P. Orlowski, M.D.

Plus d'allusion précise

N Engl J Med 2012;366:2102-10.

Variable	Eau douce n=38	Eau de Mer n=38	р
T° Ho (moy)	34,9 +/- 3	35,4 +/- 2,4	0,437
PAM Ho (moy)	71 +/- 37	83 +/- 28	0,135
Na Jo (moy)	140 +/- 5,2	144 +/- 6,8	0,004
Na J1 (moy)	140 +/- 4,7	143 +/- 3,9	0,05
K Jo (moy)	4,12 +/- 0,8	4,32 + /- 0,9	0,323
K J1 (moy)	3,88 + /- 0,6	3,88 +/- 0,4	0,995
Glycémie Jo (moy)	9,3 +/- 4,4	11,2 +/- 12,8	0,773
Lactates Jo (moy)	8,2 +/- 8,4	3,7 +/- 3,2	0,127
Créat Jo (moy)	93 +/- 37	102 +/- 34	0,203

Différence Eau Douce et Eau Salé?

Variable	Eau douce n=38	Eau de Mer n=38	р
VNI pré H	5	8	0,361
Nbre J de VNI (moy)	7 +/- 17	9 +/- 15	0,394
VM	21	19	0,646
Nbre J VM (moy)	1,4 +/- 2	1,2 +/- 1,7	0,638
PEP Ho (moy)	7 +/- 4	5 +/- 4	0,116
Al (moy)	12 +/- 4	10 +/- 4	0,456
FiO2 (moy)	58 +/- 52	75 +/- 21	0,447
pH Ho (moy)	7,18 +/- 0,24	7,25 +/- 0,14	0,610
pO2 Ho (moy)	122 +/- 96	120 +/- 107	0,864
pO2 H12 (moy)	120 +/- 48	119 +/- 77	0,677
pO2 J1 (moy)	107 +/- 37	88 +/- 26	0,146
pCO2 Ho (moy)	48 +/- 13	47 +/- 11	0,952
pCO2 H12 (moy)	38 +/- 8	43 +/- 6	0,069
pCO2 J1 (moy)	44 +/- 19	35 +/- 5	0,049
PaFi Ho (moy)	141 +/- 76	220 +/- 122	0,023
PaFi H12 (moy)	229 +/- 105	202 +/- 73	0,386
PaFi J1 (moy)	173 +/- 133	181 +/- 147	0,908
Lésions lobaires	9	8	0,783
Lésions diffuses	23	22	0,815

Différence Eau Douce et Eau Salé?

Variable	Eau douce n=38	Eau de Mer n=38	р
PAVM	1	3	0,615
Décédés	9	6	0,387
Durée séjour réa (moy)	3 +/- 2,7	2,5 +/- 2	0,349
IGS II (moy)	45 +/- 27	39 +/- 20	0,726

Pas de différence significative après appariement

Physiopathologie

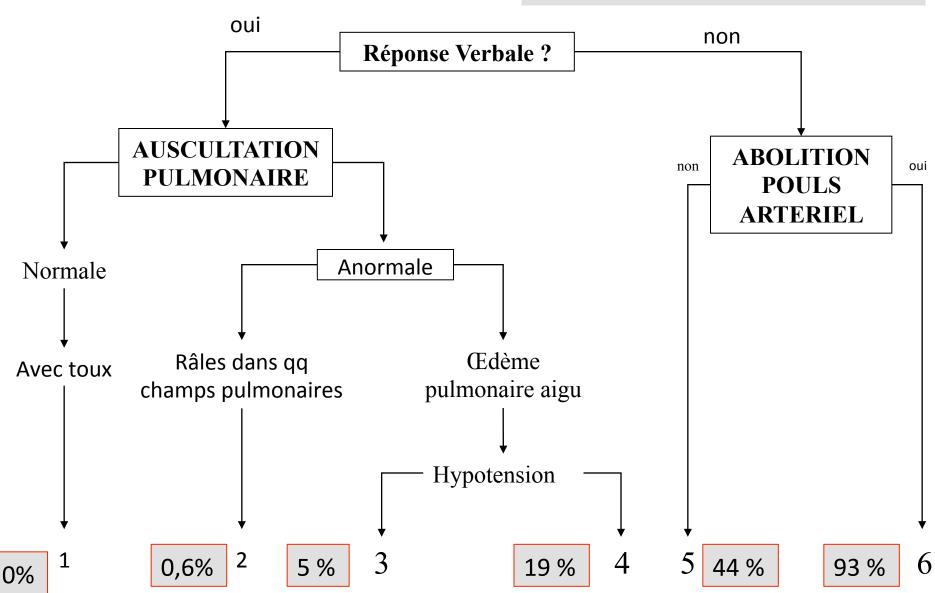
- Cardio circulatoire
 - Décharge catécholaminergique puis vasoplégie
- Respiratoire
 - Œdème lésionel (?)
 - Pneumopathie d'inhalation
- Métabolique
 - Acidose, hémodilution, Hypernatrémie
- Cérébral
 - Hypoxémie, hypotension, arrêt cardiaque
 - Œdème cérébral, HTIC

Physiopathologie - Classification

Etat résultant d'une insuffisance respiratoire provoquée par la submersion ou l'immersion en milieu liquide

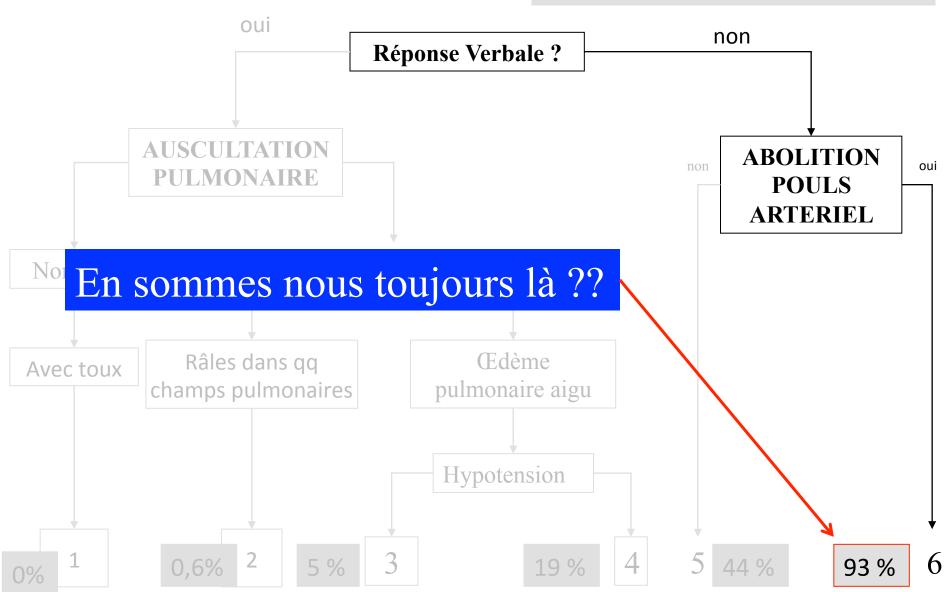
- La classification ne devrait-elle pas mettre la détresse respiratoire au centre de la réflexion ?
- Pour le moment c'est l'évaluation neurologique qui l'est!

• Fonction de la durée d'immersion


Durée de l'Immersion (min)	Probabilité de décès ou d' Handicap neurologique sévère
0 à 5 minutes	10 %
5 à 10 minutes	56 %
10 à 25 minutes	88 %
> 25 minutes	99,9 %

Kalièmie > 10 mmol/l à l'admission

- Fonction de la durée d'immersion
- Fonction du stade de gravité lors de la prise en charge


Algorithme de Szpilman

Szpilman D. et al Chest 1997; 112 : 660-665

Algorithme de Szpilman

Szpilman D. et al Chest 1997; 112 : 660-665

Étude rétrospective sur 3 ans
7 réanimations de la côte
méditerranéenne

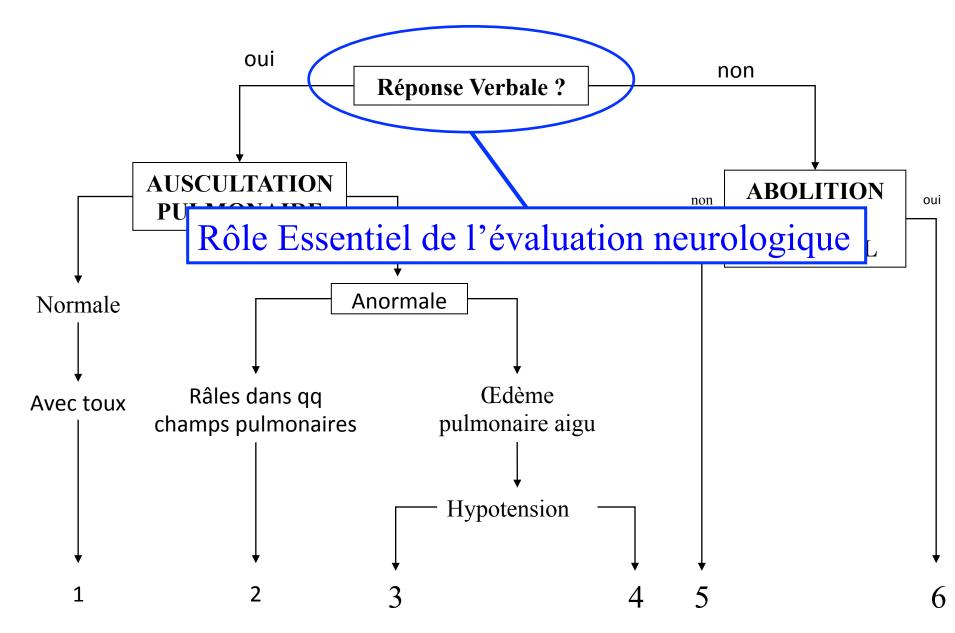
Détresse Respiratoire Aigue Post Noyade (n=126)

38 patients en ACR médicalisé

60% de mortalité à 28 jours

> 15 % de survie globale en incluant les ACR non récupérés sur place

VS


93 % de mortalité dans la série de Szpilman

Amélioration du pronostic?

- Mesures de prévention
 - Piscines privées, baïnes ...
- Rapidité d'intervention
 - MNS, SDIS, SMUR...
- Respect des recommandations
 - 5 insufflations puis alternance 30/2
- Prise en charge thérapeutique ??

- Fonction de la durée d'immersion
- Fonction du stade de gravité lors de la prise en charge
 - neurologique

Algorithme de Szpilman

Prognostic factors and outcome after drowning in an adult population

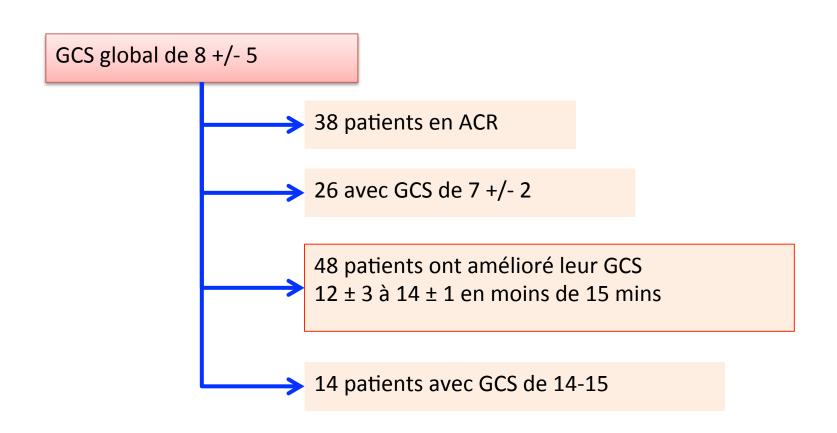
M. A. BALLESTEROS et al. Acta Anaesthesiol Scand 2009; 53: 935–940

Results: There were 43 patients (five children and 38 adults), with male predominance. Fifteen patients, all adults (34.9%), died

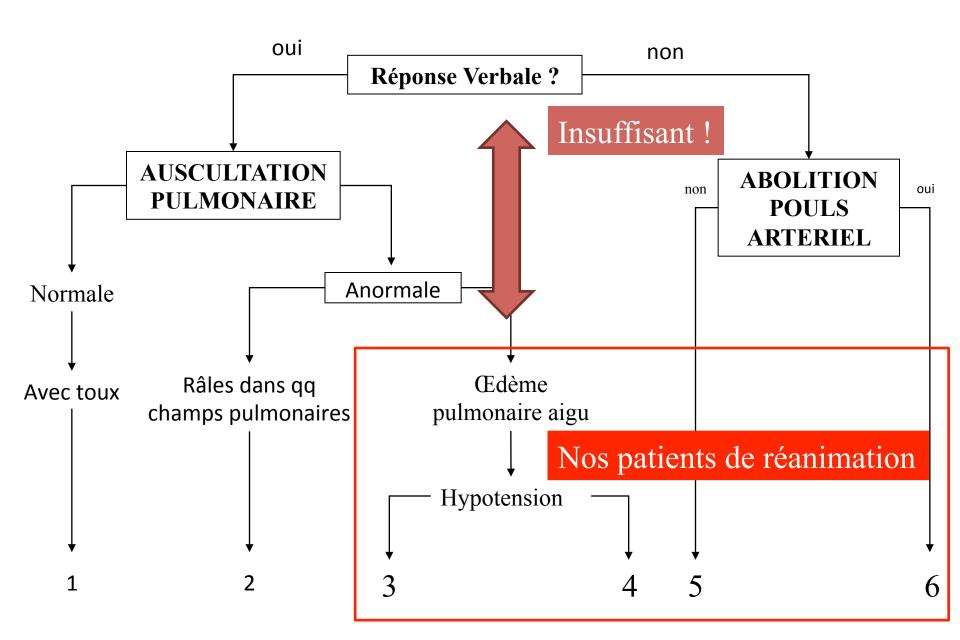
Table 3

Univariant analysis of the main variables.					
	N	β	SE	OR (95% CI)	Р
Constant			0.320		
Age (years)	43	0.041	0.017	1.04 (1.01-1.08)	0.018
Submersion time (minutes)	30	0.350	0.138	1.42 (1.08–1.86)	0.011
Water temperature (°C)	22		0.253	0.61 (0.37-0.99)	0.047
Glycaemia (mg/dl)	34	0.014	0.006	1.01 (1.00–1.03)	0.013
GCS (points)	42		0.113	0.641 (0.51-0.80)	< 0.005
No pupillary reactivity	41	3.376	0.948	29.25 (4.56-187.70)	< 0.005
APACHE II score (points)	34	0.296	0.091	1.34 (1.13-1.61)	0.001

OR is expressed with respect to each increase or decrease in the unit of measurement in which the variable is expressed. APACHE II, acute physiology and chronic health evaluation; GCS, Glasgow Coma Score; β , logistic regression coefficient; SE, standard error; OR, odds ratio.


- Fonction de la durée d'immersion
- Fonction du stade de gravité lors de la prise en charge
 - Neurologique
 Témoin de l'asphyxie
 Intubation Ventilation Mécanique

Peut-on influencer sur ce statut neurologique?


Étude rétrospective sur 3 ans

7 réanimations de la côte méditerranéenne

Détresse Respiratoire Aigue Post Noyade (n=126)

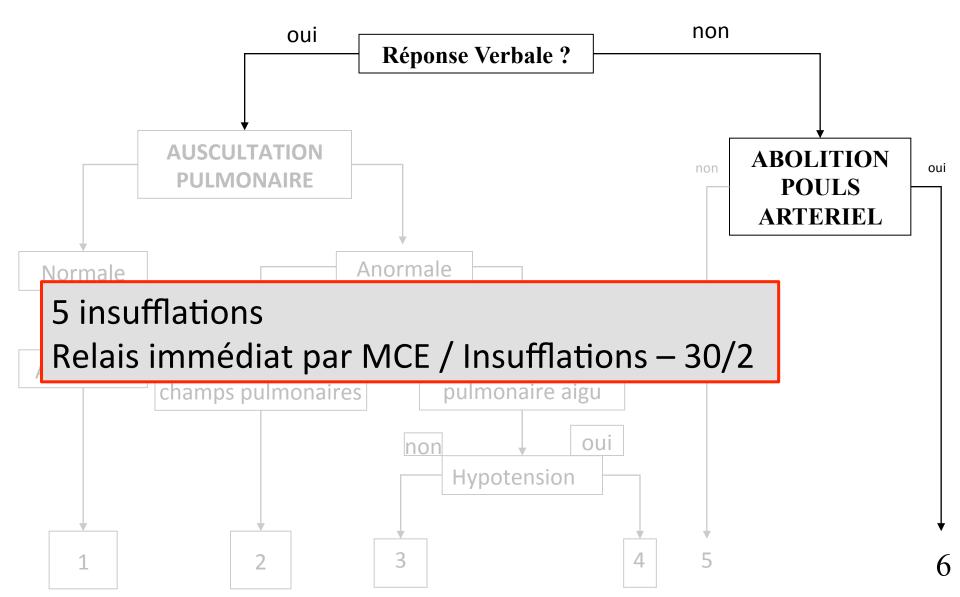
Algorithme de Szpilman

Analyse univariée

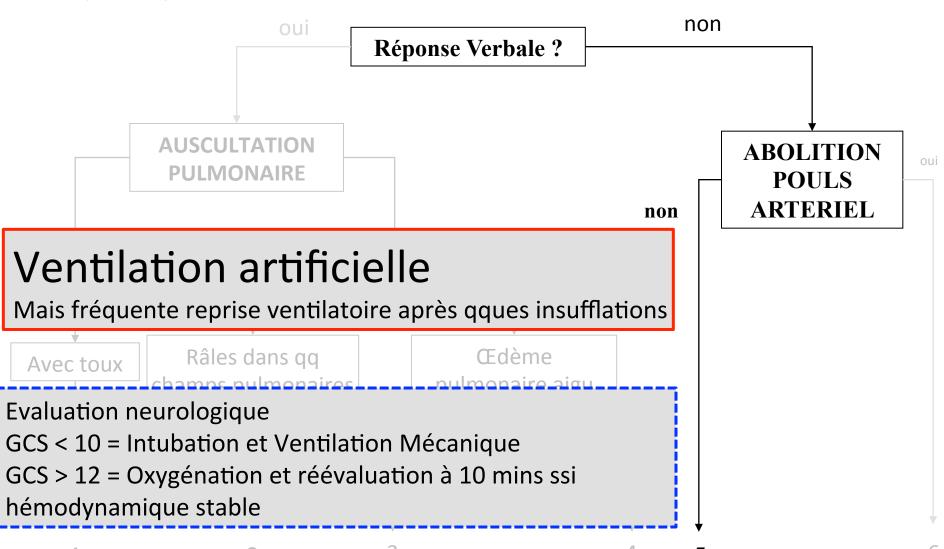
Variables	Vivants n=195	Décédés n=47	р
Sexe F	75 (38%)	18 (38%)	
M	120 (62%)	29 (62%)	0,963
âge	54,5 +/- 20	52,2 +/- 21	0,488
Eau de mer	160 (82%)	36 (77%)	0,392
ACR	44 (23%)	46 (98%)	€0,001
Glasgow	13	3	<0,001
IGS II	35 +/- 18	79 +/- 14	<0,001
Т° НО	35,8 +/- 2,1	32,9 +/- 2,8	<0,001
PAM HO	86 +/- 20	78 +/- 28	0,113
Fc H0	93 +/- 22	92 +/- 31	0,818
рН НО	7,28 +/- 0,13	7,00 +/- 0,28	<0,001
Lactates H0	4 +/- 5	14 +/- 10	<0,001
НСОЗ- НО	20,9 +/- 4,2	13,2 +/- 5,8	<0,001
PaO2/FiO2 H0	172 +/- 115	195 +/- 123	0,351
IOT initiale	72 (37%)	47(100%)	<0,001
VNI en pré-H	38 (100%)	0	0,001
Natrémie H0	144 +/- 5	143 +/- 7	0,578
Lésions lobaires	36 (23%)	2 (5%)	
Lésions diffuses	122 (77%)	38 (95%)	0,011

Analyse univariée des facteurs pronostiques de décès chez les patients noyés admis en réanimation, n= 242 (Moyennes +/- écarts-types)

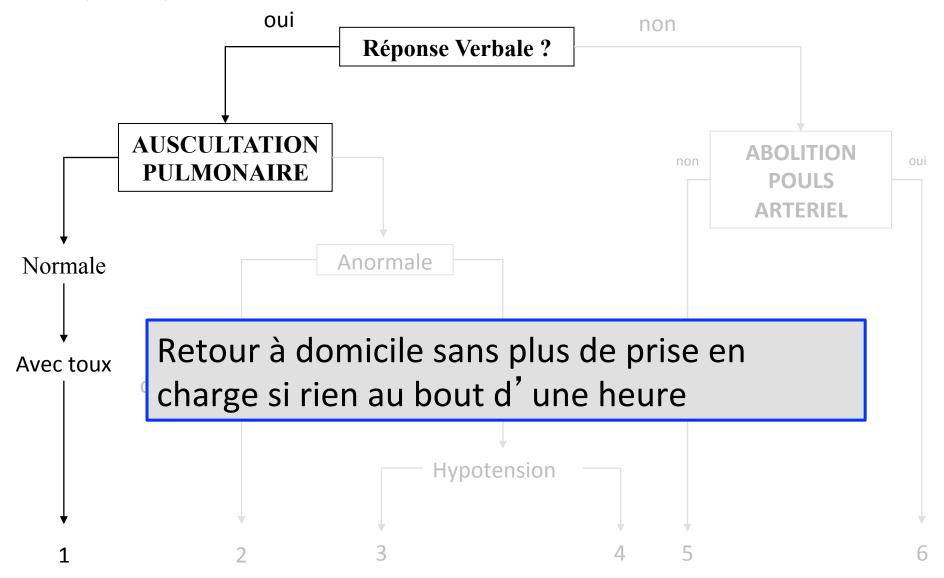
Analyse multivariée

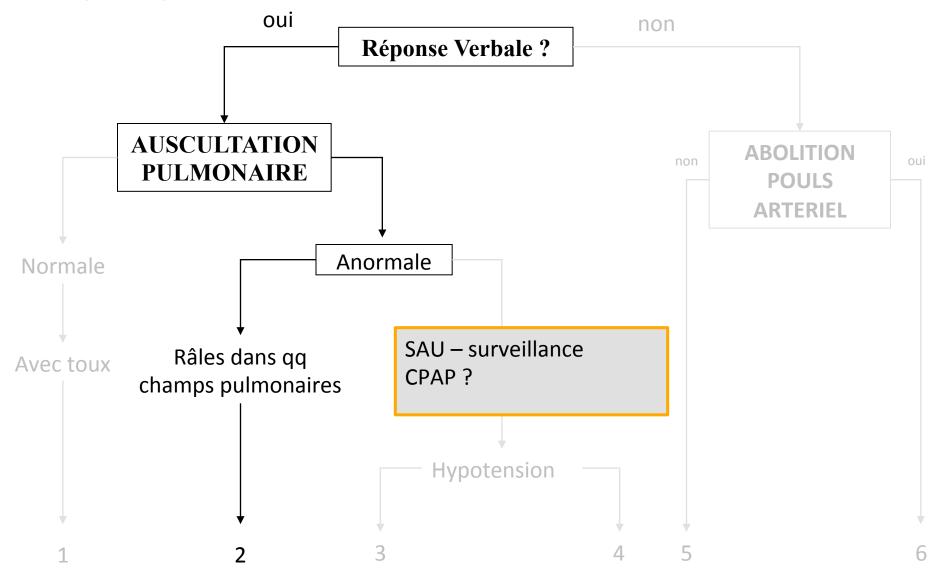

	OR (IC 95%)	р
рН Н0	1,780 [0,008-376,4]	0.833
Lactatémie H0	1.175 [1,021-1,352]	0.024^{*}
T°< 34.6°C H0	5,222 [1.390-19,63]	0.014*
HCO ₃ - H0	0,901 [0,734-1,105]	0.316
Lésions diffuses radiologiques	14,26 [1,865-109,0]	0.010^{*}

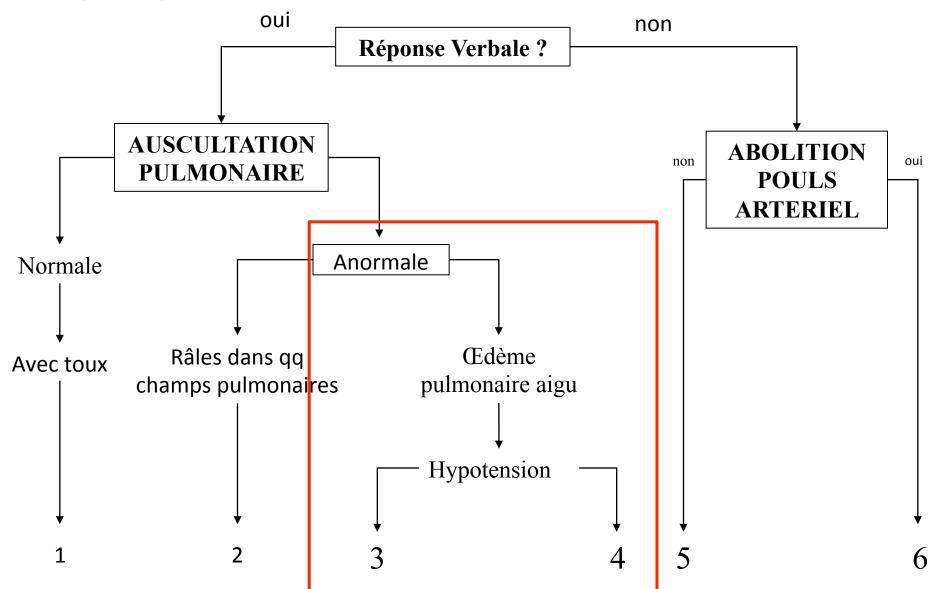
Régression logistique du risque de mortalité selon les facteurs pronostiques *p < 0.05


Pronostic des Noyades

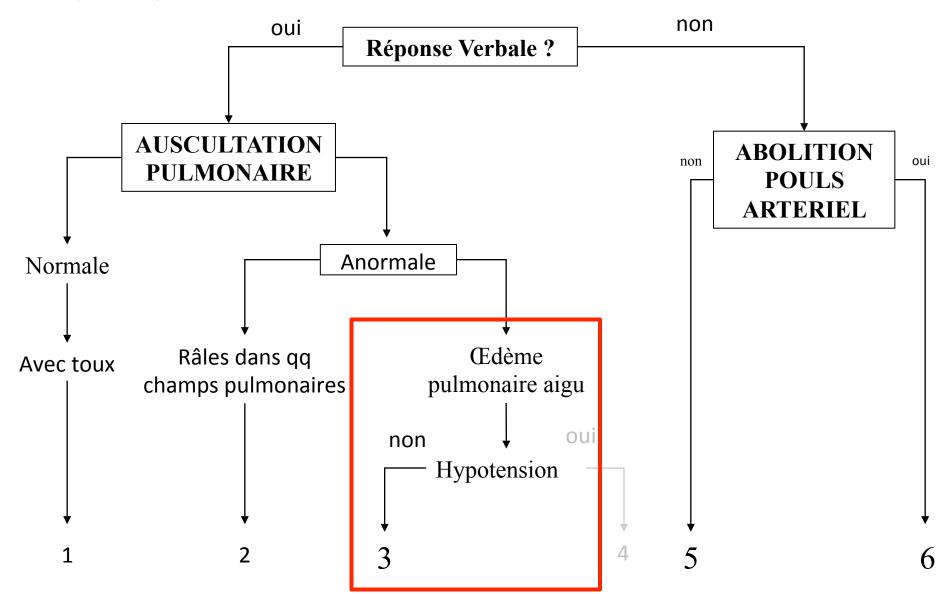
- En amélioration malgré de grande disparités
- La rapidité d'action des secours est essentielle
- Le statut neurologique est au centre du pronostic
 - Il est le reflet de l'hypoxémie
 - Il est probablement modifiable
- Il n'existe pas données scientifiques quant à l'intérêt de l'hypothermie thérapeutique


Prise en Charge Thérapeutique

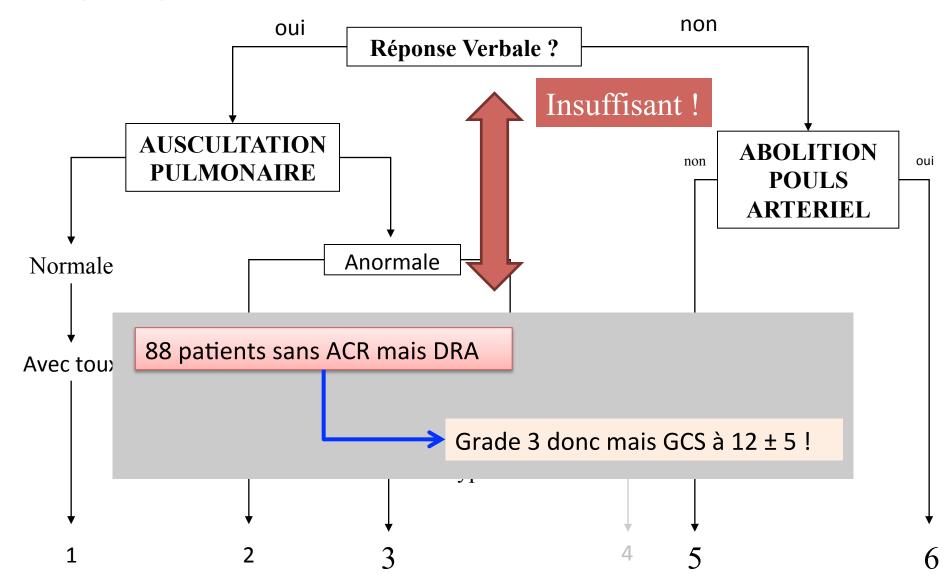

N Engl J Med 2012;366:2102-10.


N Engl J Med 2012;366:2102-10.

N Engl J Med 2012;366:2102-10.



N Engl J Med 2012;366:2102-10.

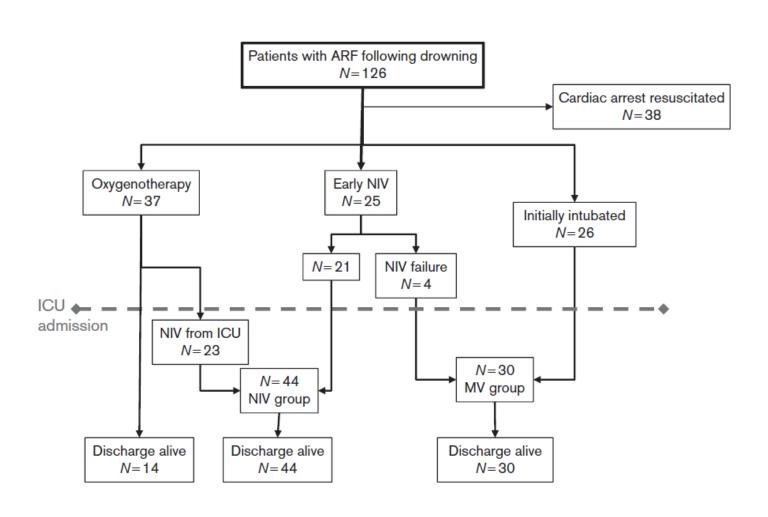


	ACR	Pas d' ACR	Р
pH initial	7.11	7.27	<0.001
PaCO2 initiale (mmol/L)	49	46	NS
PaO2/FiO2	217	155	0.052
Température corporelle initiale (°C)	34.6	36.6	<0.001
PAM HO (mmHg)	84	90	NS
Fréquence cardiaque HO (/min)	91	93	NS
Remplissage vasculaire 24h (litre)	2.5	0.7	<0.001
Jours avec amines	3	0.3	<0.001
Défaillance cardiaque	40 %	3 %	<0.001
Glycémie (mmol/L)	14.3	8	<0.001
Lactatémie (mmol/L)	8.6	3.5	<0.001
Protidémie (g/L)	64	71	<0.05
Diurèse (mL)	2030	1550	<0.05
SAPS2	65	33	<0.05
SOFA	11	4	<0.05
Durée de séjour en réanimation (jour)	12	3	<0.05
Mortalité à 28 jours	60 %	0 %	<0.05

N Engl J Med 2012;366:2102-10.

N Engl J Med 2012;366:2102-10.

Prise en charge des patients


- Arrêt cardio respiratoire
 - 5 insufflations puis 30/2 immédiatement
- Détresse respiratoire
 - Quel niveau ?
 - Intubation et VM pour tous ?
 - Place de la VNI ?

Quelques données pour illustrer le débat

Acute respiratory failure after drowning: a retrospective multicenter survey

Pierre Michelet^a, Fouad Bouzana^a, Olivia Charmensat^a, Fabrice Tiger^b, Jacques Durand-Gasselin^c, Sami Hraiech^d, Samir Jaber^e, Jean Dellamonica^f and Carole Ichai^g

European Journal of Emergency Medicine 2015

Étude rétrospective sur 3 ans

7 réanimations de la côte méditerranéenne

Détresse Respiratoire Aigue Post Noyade (n=126)

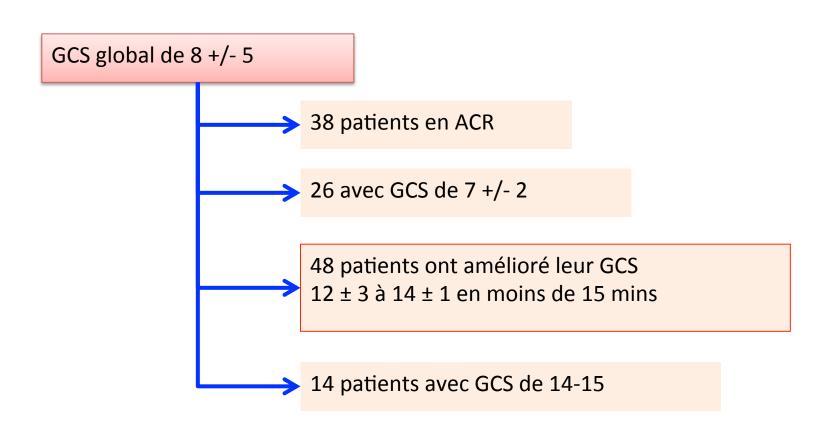


Table 1 Utstein style for drowning parameters

	Oxygen group (N=14)	NIV group (N=44)	MV group (N=30)
Age (years)	56±21	65±14	58±23
Sex (male/female)	9/5	23/21	7/23
Cardiovascular disease (%)	2 (14)	20 (45)	8 (25)
Respiratory disease (%)	1(7)	3 (6.5)	5 (18)
Neurological disease (%)	1 (7)	6 (14)	8 (27)
Loss of consciousness [n (%)]	2 (10)	18 (36)	21 (26)
Glasgow Coma Scale	13±2 ^a	14±1 ^a	7 ± 2
Corporeal temperature (H0) (°C)	36.2±1	36.7±1.4	36.2±1.2
Mean arterial pressure (H0) (mmHg) ^a	90±22	96±18	77 ± 18
Heart rate (H0) (beats/min) ^a	91±25	92±24	87 ± 26
pH (H0) ^a	7.33 ± 0.06	7.31 ± 0.08	7.23 ± 0.09
PaFiO ₂ (H0) (mmHg) ^a	243±154 ^b	156±92	149 ± 95
PaCO ₂ (H0) (mmHg) ^a	43±8	44±8	52 ± 11
HCO ₃ (mmol/l) ^a	22±2	22±3	22 ± 4
Lactate (H0) (mmol/l) ^a	2.0 ± 0.6	2.9 ± 1.9	3.4 ± 2
SAPS 2 score	24±8	28±8	50 ± 19
SOFA score	1.7±1	2.4 ± 2	6.5 ± 4
Incidence of infectious	0	1 (2)	6 (20)
pneumonia [n (%)]			
Length of ventilator support	-	1.4±0.7	3±2
ICU length of stay	1.4±0.5	2 (1-7)	3 (1-14)

MV, mechanical ventilation; NIV, noninvasive ventilation; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; H0, intensive care first assessment.

Acute respiratory failure after drowning: a retrospective multicenter survey

Pierre Michelet^a, Fouad Bouzana^a, Olivia Charmensat^a, Fabrice Tiger^b, Jacques Durand-Gasselin^c, Sami Hraiech^d, Samir Jaber^e, Jean Dellamonica^f and Carole Ichai^g

VNI possible et safe
Patients en amélioration
neurologique ou à statut
neurologique OK

^aData recorded at the ICU admission.

^bFor PaFiO₂ ratio calculation, the measured PaO₂ on blood gas analysis was divided by 80% FiO₂ as oxygen concentration in the heavy oxygen supply mask.

Intérêt certain Il faut faire (G1+) Décompensation de BPCO OAP cardiogénique

Intérêt non établi de façon certaine Il faut probablement faire (G2+)

IRA hypoxémique de l'immunodéprimé Post-opératoire de chirurgie thoracique et abdominale

Stratégie de sevrage de la ventilation invasive chez les BPCO

Prévention d'une IRA post extubation

Traumatisme thoracique fermé isolé

Décompensation de maladies neuromusculaires chroniques et autres IRC restrictives

Mucoviscidose décompensée Forme apnéisante de la bronchiolite aiguë Laryngo-trachéomalacie

Conclusions

- Noyade : pathologie circonstancielle en pleine actualité
- Données épidémiologiques robuste en France
- Données cliniques manquantes
 - Pronostic pas si sombre
- Place de la détresse respiratoire à mettre en avant
 - Stratégie ventilatoire à préciser
 - Probable place de la VNI