

Intoxication au CO

Jeudi du BMPM 9 juin 2016

Dr Pierre LOUGE

Spécialiste de médecine de la plongée Service de Médecine Hyperbare et d'Expertise Plongée HIA STE ANNE

Famille d'origine Vietnamienne (parents + frère et sœur)

Le fils a du mal à réveiller sa famille

Appel des pompiers : alarme CO (>300 ppm)

3 patients:

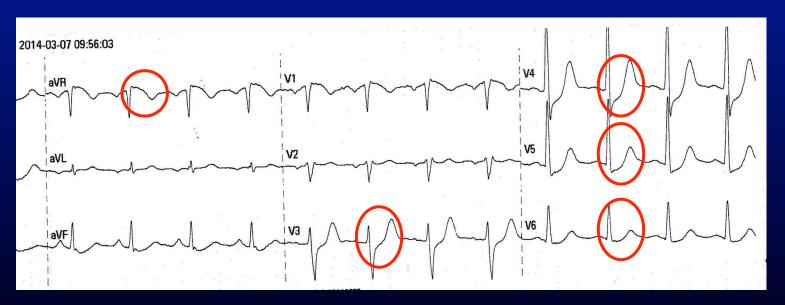
- ✓ Père 56 ans, notion de PC + douleur thoracique
- ✓ Fille 24 ans, notion de PC avec difficultés de réveil
- ✓ Mère 51 ans, notion de PC

Chauffage défectueux depuis 1 semaine En cours de réparation

Céphalées récurrentes pour tous

Sd pseudo grippal (médecin traitant)

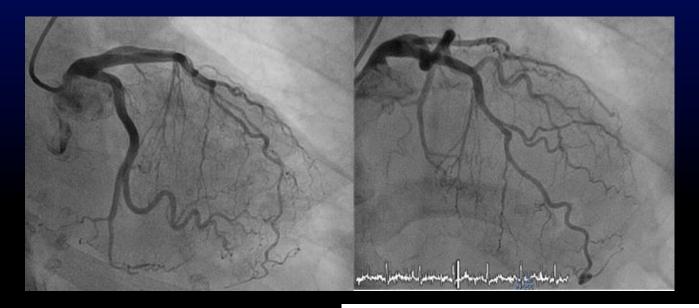
Pb de barrières de la langue !...



Prénom Date de Service (Opérate:		ère	Van Tha				
Type d'é		Artériel	GAZOL				
$FO_2(1)$		0,0 %	BIOCHIM				
<i>T</i> PEEP		36,8 °C cmH2O					
ETCO2		mmHg					
Valeurs	des gaz du						
↓pH	Ū	7,347					
↓ pC	0,	30,4	mmHg				
† pO	2	338	mmHg				
Etat acid	do-basique						
cH	CO ₃ -(P)c	16,2	mmol/L				
сВа	ase(B)c	-7,8	mmol/L				
Valeurs	corrigées d	e la temp					
pН	$(T)_{\mathcal{C}}$	7,349					
рC	$O_2(T)_C$	30,1	mmHg				
pΟ	$Q_2(T)_C$	337	mmHg				
Valeurs	d'oxymétrie	9					
cth	łb	14,8	g/dL				
Hc	t _c	45.5	%				
† <i>F</i> C	OHb	19,3	%				
FM	letHb	1,4	%				
FO	₂ Hb	78,7	%				
sO	2	99,2	%				
FH	Hb	0,6	%				
Valeurs des électrolytes							
cN	a+	136	mmol/L				
cK'	•	3,4	mmol/L				
↓ cC	a ²⁺	1,12	mmol/L				
† cC	-	107	mmol/L				
Valeurs	Valeurs des métabolites						
↑ ¢G	lu	213	mg/dL				
† cLa	ac	8,7	mmol/L				
mC	osm _C	284,2	mmol/kg				

Prénom Date de Service Opérate	F	ille		N GUYI Xian Ar NGUYE
Type d'é		Artériel		GAZOE
FO ₂ (I)		0,0 %		Discuss
<i>T</i> PEEP		37,2 °C		BIOCHIM
ETCO2		cmH2O mmHa		
				·
	des gaz d	•		
pH		7,434		
↑ bC	-	30,6		mHg
† pC		337	m	пНg
	ido-basique			
	ICO3-(b)c	20,2		mol/L
	ase(B)c	-2,8	m	mol/L
	-	de la temp.		
	$I(T)_{\mathbf{C}}$	7,431		
-	$CO_2(T)_C$	30,9	m	пНg
	$O_2(T)_C$	338	mı	mHg
Valeurs	d'oxymétri	ie		
1 ctl	Нb	11,4	g/	dL
	ete	35.0	%	_
	COHb	16,3	%	
	/letHb	1,1	%	
FC	D₂Hb	82,4	%	
sC)2	99,7	%	
	Hb	0,2	%	
Valeurs	des électr	olytes		
1 01	la⁺	134	m	mol/L
cK	(*	4,1	m	mol/L
† cC	ca ²⁺	1,09	m	mol/L
† cC) -	108	m	mol/L
Valeurs	des métal	polites		
cC	∃iu	101	m	g/dL
† cL	ac	3,4	m	mol/l
m	Osm _c	274,1	m	mol/kg

Prénor Date d Servic Opéral	Mère					
Type d'échant.	Artériel	GAZOE				
FO₂(I) T	0,0 % 36,5 °C	BIOCHIM				
PEEP	cmH2O					
ETCO2	mmHg					
Valeurs des gaz d	lu sang					
pН	7,387					
pCO ₂	34,6	mmHg				
↓ pO₂	34,0	mmHg				
Etat acido-basique	е					
cHCO ₃ -(P)c	20,3	mmol/L				
cBase(B)c	-3,6	mmol/L				
Valeurs corrigées	de la temp					
pH(T) _C	7,394					
$pCO_2(T)_C$	33,7	mmHg				
$pO_2(T)_C$	32,8	mmHg				
Valeurs d'oxymét	rie					
ctHb	12,1	g/dL				
Hoto	37.3	%				
↑(<i>F</i> COHb	13,7	%				
FMetHb	1,4	%				
FO₂Hb	61,6	%				
sO ₂	72,5	%				
FHHb	23,3	%				
Valeurs des élect	rolytes					
cNa⁺	138	mmol/L				
cK⁴	3,9	mmol/L				
↓ cCa²⁺	1,08	mmol/L				
f cCl-	107	mmol/L				
Valeurs des métabolites						
† cGlu	116	mg/dL				
† cLac	5,7	mmo/L				
mOsm _C	283,3	mmol/kg				



Date			11/03/2014	11/03/2014	10/03/2014	09/03/2014	08/03/2014	07/03/2014	07/03/2014
Heure			06:01	06:00	06:00	06:00	06:00	13:38	10:36
TGO (ASAT) UI/I	UI/I	10 - 50					185 (+)	270 (+)	267 (+)
TGP (ALAT) UI/I	UI/I	10 - 40					156 (+)	222 (+)	233 (+)
GGT UI/I	UI/I	8 - 61					61		70 (+)
Ph.alcalines UI/I	UI/I	40 - 129					47		55
Lipase UI/I	UI/I	13 - 60							19
CK UI/I	UI/I	39 - 308	596 (+)		1194 (+)	2319 (+)	3983 (+)	3067 (+)*	752 (+)*
LDH UI/I	UI/I	135 - 225					462 (+)	453 (+)	477 (+)
CRP mg/l	mg/l	<5.0	15(+)		33 (+)	66 (+)	35 (+)		8.9(+)
Myoglobine μg/l	μg/l	28 - 72	36		38	60		4252 (+)*	3003 (+)
Troponine T μg/I	μg/l	<14	714(+)		888 (+)	911 (+)	1266 (+)	763 (+)	280 (+)
NT Pro BNP ng/l	ng/l	10 - 161	255 (+)	·	684 (+)	1009 (+)	1735 (+)		811 (+)

Hospitalisation USIC pour SCA

Echographie: hypokinésie globale (FEVG 35 %)

Coronarographie No

Fig. 2. Coronarographie montrant l'absence de sténose significative respectivement sur la circonflexe, l'interventriculaire antérieure et la coronaire droite.

J2 Echographie de contrôle : FEVG 67 %

Fait clinique

Syndrome coronaire aigu avec dysfonction ventriculaire gauche lors d'une intoxication au monoxyde de carbone

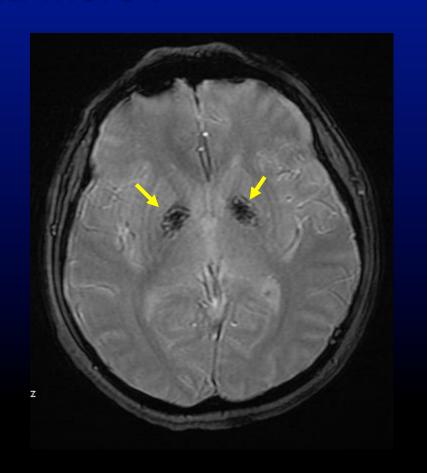
Acute coronary syndrome with impaired left ventricular function in a carbon monoxide poisoning

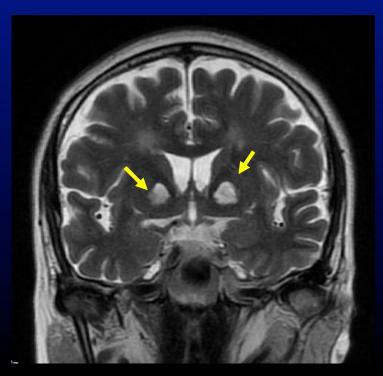
E. Capilla a,*, F. Pons a, R. Poyet a, S. Kerebel a, C. Jego a, P. Louge b, G.-R. Cellarier a

^a Service de cardiologie, hôpital Sainte-Anne, BCRM boulevard Sainte-Anne, BP 600, 83600 Toulon cedex 9, France
^b Service de médecine hyperbare et d'expertise plongée, hôpital Sainte-Anne, BCRM boulevard Sainte-Anne, BP 600, 83600 Toulon cedex 9, France

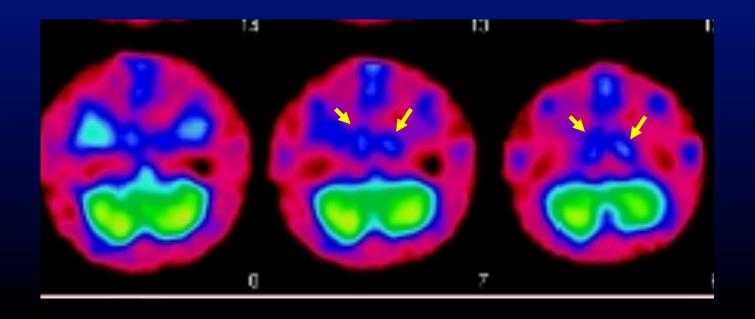
Sortie du caisson :

- ✓ disparition des céphalées
- ✓ asthénie persistante
- ✓ quelques difficultés pour se lever

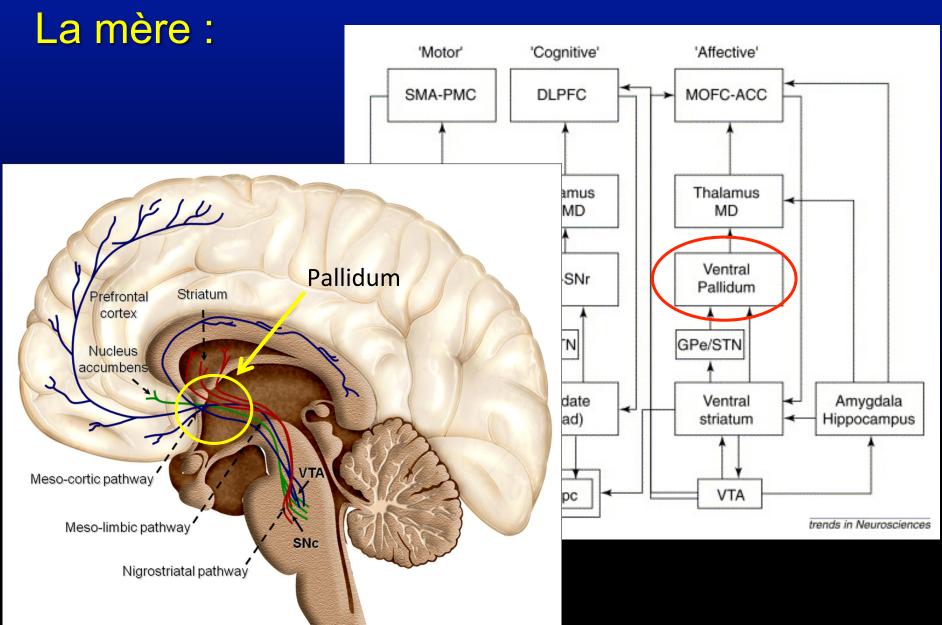

Hébergée en ORL 24 heures


Consultation à 1 mois : apparition progressive

- ✓ apathique, inactive, prostrée
- ✓ indifférence affective
- ✓ vide mental


Consultation neuro en urgence (Dr Faivre)

- ✓ Σd Athymhormique
- ✓ ou Perte d'AutoActivation Psychique



IRM cérébrale : nécrose bipallidale

Scintigraphie à l'HMPAO: hypofixation orbito-cingulaire

Intoxication au CO

1^{ère} cause de décès par intoxication en France

- ✓ France : 6000-8000 cas annuels (mortalité ≈ 5 %)
- ✓ USA: 50 000 cas dont 3800 morts/an dont 2 300 par suicide
- ✓ GB: 1208 morts en 1992 / 877 morts en 1996 (suicide: 50%)

Femme asphyxiée Dessaint 1822

Méconnue dans 30% des cas

Référence:

Concise Clinical Review

Practice Recommendations in the Diagnosis, Management, and Prevention of Carbon Monoxide Poisoning

Neil B. Hampson¹, Claude A. Piantadosi², Stephen R. Thom³, and Lindell K. Weaver⁴

¹Virginia Mason Medical Center, Seattle, Washington; ²Duke University Medical Center, Durham, North Carolina; ³University of Pennsylvania Medical Center, Philadelphia, Pennsylvania; and ⁴Intermountain Medical Center, Salt Lake City, Utah

Am J Respir Crit Care Med Vol 186, Iss. XXXX, pp 1–7, xxxx, 2012 Copyright © 2012 by the American Thoracic Society Originally Published in Press as DOI: 10.1164/rccm.201207-1284CI on October 18, 2012 Internet address: www.atsjournals.org

Le monoxyde de carbone (CO)

Le monoxyde de carbone est un gaz

- ✓ incolore,
- ✓ inodore,
- √ de densité identique à celle de l'air,
- ✓ produit par la combustion incomplète des composés carbonés.

$$C + O_2 \rightarrow H_2O + CO_2 + CO$$

Le monoxyde de carbone (CO)

Défauts liés au combustible (C)

✓ utilisation de combustibles inadéquats ou de mauvaise qualité

(pétrole lampant - butane propane)

Défauts liés au comburant (O₂)

- √ local mal ventilé,
- ✓ rejet des gaz brûlés dans les locaux,
- ✓ débit d'air insuffisant,
- ✓ saturation en eau des locaux,
- √ inversion climatique

Le monoxyde de carbone (CO)

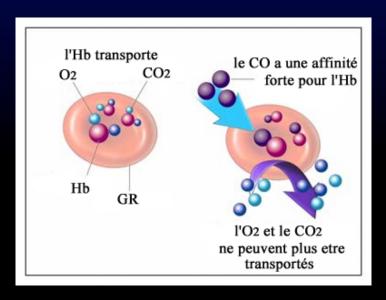
Concentration atmosphérique < 0.001%

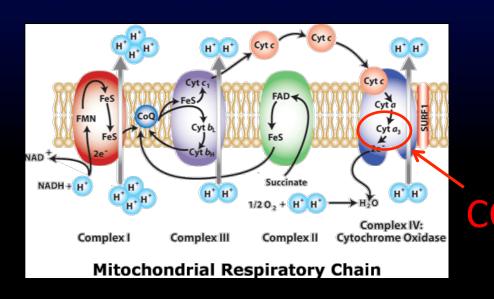
HbCO détectable chez tout individu

- \checkmark fumeurs → 10%
- ✓ non-fumeurs: 1 à 3%
- ✓ CO produit de la dégradation de l'hème

Physiopathologie

Toxicité CO


Blocage du transport de l'O₂ par l'hémoglobine (affinité x 250)


+

Hypoxie tissulaire

+

Toxicité directe au niveau cellulaire

Hypoxie Histotoxique

Physiopathologie

Toxicité CO

- ✓ Fixé sur les protéines héminiques intracellulaires (myoglobine, Hb, Cytochrome aa3)
- ✓ Production de NO → peroxynitrique
- ✓ Lipoperoxidation (PNN)
- ✓ Stress oxydant (mitochodrie)
- ✓ Apoptose
- ✓ Lésions immuno-médiées
- ✓ Phénomènes inflammatoires

Circonstances de survenue

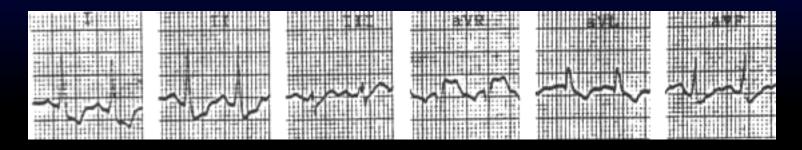
Toujours penser au CO devant :

- ✓ Malaise en milieu confiné (salle de bain, garage, caravane, etc...)
- ✓ Malaise collectif
- ✓ Inhalation de fumées d'incendie

La quantité de CO inhalé dépend :

- ✓ Concentration dans le milieu ambiant
- ✓ Durée d'exposition
- ✓ Ventilation alvéolaire du sujet exposé

Clinique:


- ✓ Signes neuro-sensoriels :
 - Céphalées (83%)
 - Vertiges (80%)
 - Asthénie
 - > Troubles digestifs (51%): nausées, vomissements
 - Acouphènes, troubles visuels, confusion
 - > Troubles mnésiques
 - > Perte de connaissance brève (30%)
 - > Coma (5à 15%)

Non spécifiques!

Clinique:

✓ Signes cardio-vasculaires:

- Palpitations
- > Tachycardie
- Douleur angineuse
- Anomalies ECG (40 à 60%) (ischémie ou infarctus)
- Œdème aigu pulmonaire

Myocardial infarction with normal coronary arteries after acute exposure to carbon monoxide

Clinique:

- ✓ autres signes:
 - Lésions cutanées : Couleur rouge cerise, cochenille, phlyctènes Rares!
 - Lésions musculaires : Rhabdomyolyse
 - Formes mortelles d'emblée : Intoxication massive

Complications:

- ✓ Immédiate :
 - >cardiovasculaire:
 - . insuffisance circulatoire
 - . troubles du rythme
 - . insuffisance coronarienne

- pulmonaire : œdème pulmonaire pneumopathie (souvent par inhalation)
- musculaire : rhabdomyolyse (et insuffisance rénale)

Complications:

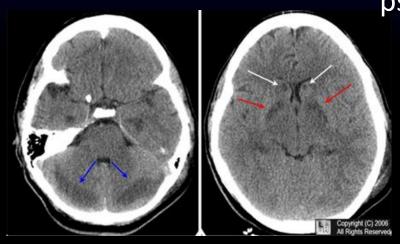
- ✓ A long terme :
 - Neurologiques:
 - ✓ coma prolongé
 - ✓ confusion
 - ✓ syndrome parkinsonien
 - Psychiatriques:
 - ✓ démence
 - ✓ trouble de la personnalité
 - ✓ trouble de la mémoire
 - > Syndrome post-intervallaire

Σd post-intervalaire:

Intervalle libre de 3 à 240 jours (moy 3 semaines)

Incidence variable: 10 à 30%

Symptomatologie:


anomalies cognitives ou de la

personnalité

syndrome parkinsonien

incontinence.....démence

psychose

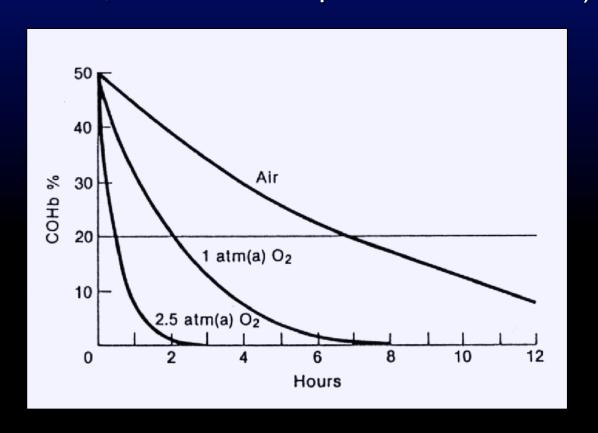
Nécrose bi-pallidale

Diagnostic:

Repose sur l'HbCO (artérielle voire veineuse) :

> 10 % chez non fumeur, 15 % chez le fumeur

Pas de corrélation entre l'importance de l'HbCO, la symptomatologie et le pronostic


Dès la prise en charge :

L'ONB au masque haute concentration 15 l/mn en attente de la gazométrie

Traitement:

1 – Oxygénothérapie Normobare

Masque haute concentration $FiO_2 = 100\%$ Jusqu'à normalisation de l'HbCO (normalement 6h00, mais certains préconisent 12h00)

Traitement:

ONB ou OHB?

TABLE 1. SUMMARY OF STUDIES COMPARING NORMOBARIC WITH HYPERBARIC 100% OXYGEN FOR TREATMENT OF CARBON MONOXIDE POISONING

Study (Ref. No.)	Year	Design	Intervention	Result	n
Raphael and colleagues (44)	1989	Randomized; if LOC, HBO ₂ used	HBO_2 (2.0 ATA) vs. 6 h mask O_2 if no LOC; 1 HBO_2 vs. 2 HBO_2 if LOC	No difference in symptoms between groups at 1 mo	343
Ducasse and colleagues (45)	1995	Randomized, not blinded	HBO ₂ (2.5 ATA) vs. mask O ₂	HBO ₂ improved cerebral blood flow reactivity to acetazolamide	26
Thom and colleagues (46)	1995	Randomized, not blinded, excluded LOC	HBO ₂ (2.9 ATA) vs. mask O ₂	No sequelae in HBO_2 vs. 23% for mask O_2 ; $NNT = 4.3$	65
Scheinkestel and colleagues (48)	1999	Double-blind RCT; cluster randomization; included LOC	3 to 6 HBO ₂ (2.8 ATA) sessions vs. 3 d of mask O ₂	Very high number lost to 1 mo follow-up (54%), limiting any conclusion	191
Mathieu and colleagues (47)	1996	Randomized, not blinded, excluded LOC	HBO ₂ vs. mask O ₂	Abstract only—HBO ₂ reduced sequelae at 1 and 3 mo; none at 1 yr	575
Weaver and colleagues (49)	2002	Double-blind randomized, included LOC	3 HBO $_2$ (3 ATA for initial) in 24 h vs. 100% O $_2$ + 2 sham chamber sessions	Reduced cognitive sequelae (25 vs. 46%) at 6 wk (OR, 0.39; 95% CI, 0.2–0.78; $P = 0.007$); NNT = 4.8; with significant differences persisting to 12 mo	152
Annane and colleagues (50)	2011	Randomized, not blinded	Trial 1: HBO ₂ session (2.0 ATA) + 4 h mask O ₂ vs. 6 h mask O ₂ if transient LOC Trial 2: 2 HBO ₂ + 4 h mask O ₂ vs. 1 HBO ₂ + 4 h mask O ₂ if initial coma	Outcomes measured by symptom questionnaire and physical examination at 1 mo. Trial 1—no difference in outcome as measured. Trial 2—"complete recovery" rate 47% with 2 HBO ₂ vs. 68% with 1 HBO ₂	385

Definitions of abbreviations: ATA = atmosphere absolute; CI = confidence interval; CI = confidence interval;

Pb de biais méthodologiques et de type de population pour évaluer les séquelles à long terme

OHB: quel but?

Prévenir les séquelles neurocognitives à moyen et long terme

Il n'a jamais été démontré que l'OHB réduisait la mortalité immédiate ni les complications cardiologiques ou neurologiques à la phase aigue

Facteurs de risque de séquelles cognitives :

- √ Age > 40 ans
- ✓ Exposition au CO > 6 heures
- √ Glasgow < 9
 </p>
- ✓ PASyst < 90 mm Hg</p>
- ✓ ZCPK > 160 U/L
- ✓ ZCRP
- ✓ ZLeucocytes > 10 000 /µl

dans les 6 h après admission

OHB pour qui?

Conférence de consensus de 2004 : (ECHM)

- √ Coma (GLS < 9)
 </p>
- ✓ Notion de perte de connaissance
- ✓ Anomalies objectives neurologiques
- ✓ Anomalies cardiaques et respiratoires
- ✓ Femme enceinte

+ Recommandations de 2012 (US)

- √ Acidose métabolique (Ph < 7.20)
 </p>
- √ HbCO > 25 %
- ✓ Enfants en bas âge

Cas particuliers:

1. En cas d'intoxication au CO pure avec une durée d'exposition < 6h, la perte de connaissance brève isolée d'un adulte jeune (<40ans) avec un bilan biologique et un examen clinique normal n'est pas une indication d'OHB et ne doit pas déclencher de transfert vers un centre hyperbare mais doit être maintenu sous oxygène FiO2 100 % minimum 6 heures éventuellement jusqu'à 12 heures

Traitement:

Si intoxication volontaire

Fréquence des co-intoxications ++ (alcool)

Suivi psychiatrique (haut risque de récidive)

Si Intoxication involontaire

Suivi à 4-6 semaines pour séquelles cognitives

Si Intoxication dans le cadre d'un incendie

Fréquente association avec une intox cyanhydrique

Traitement présomptif (Hydroxocobalamine 5g = 2 cyanokit)

si Ph < 7.20 ou Lactates > 20 mmol/L