LES JEUDIS DE L'URGENCE

www.SMURBMPM.fr

Noyades – vers des avancées?

Pierre Michelet
Pôle Réanimation Urgence SAMU Hyperbarie
Marseille

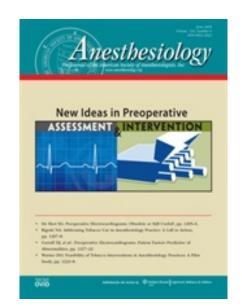
Déclaration de lien d'intérêt

Aucun lien d'intérêt en rapport avec la communication présente

P Michelet Pôle Réanimation Urgence SAMU Hyperbarie - Marseille

Noyade – Demandez le programme!

- Un problématique très actuelle
 - L' exemple français
- Définition
- Physiopathologie
- Pronostic
- Prise en charge thérapeutique


Noyade une problématique actuelle

Anesthesiology 2009; 110:1390 - 401

Drowning

Update 2009

A. Joseph Layon, M.D.,* Jerome H. Modell, M.D., D.Sc. (Hon)†

Des constatations

150 000 décès, 2 millions de survivant par an Plus de 1000 publications ses 10 dernières années Beaucoup d'expérimental et de rétrospectif Moins de 10 études cliniques prospectives Aucune étude comparative

Anesthesiology 2009; 110:1211-3

Drowning

A Cry for Help

REVIEW ARTICLE

CURRENT CONCEPTS

Drowning

David Szpilman, M.D., Joost J.L.M. Bierens, M.D., Ph.D., Anthony J. Handley, M.D., and James P. Orlowski, M.D.

Une Revue récente

Constatations plus alarmantes encore!

500 000 décès (meilleur recensement)

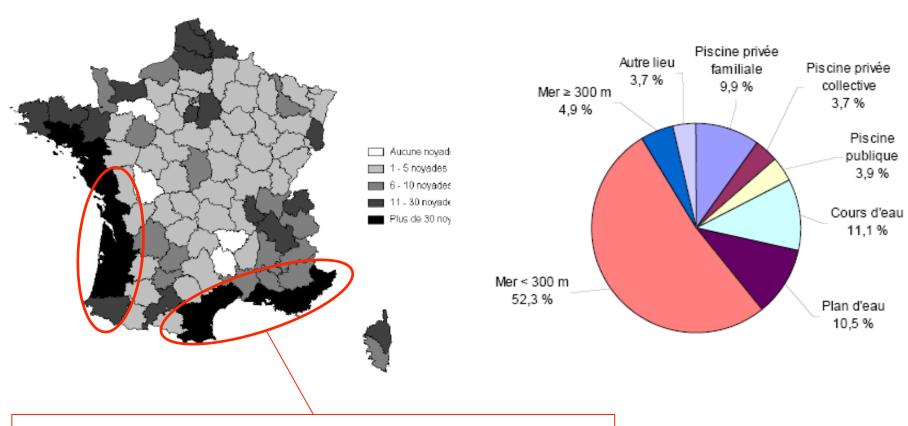
Statistiques actuelles n' incluant pas les catastrophes naturelles et les naufrages!

Plus de 200 M de \$ aux USA, 250 M de \$ au Brésil

Épidémiologie différente entre les pays « riches » et les autres

Différences épidémiologiques

- Pays défavorisés
 - Les enfants
 - La pauvreté
 - Le sexe masculin
 - Le défaut de scolarisation
 - La ruralité
 - L'alcool

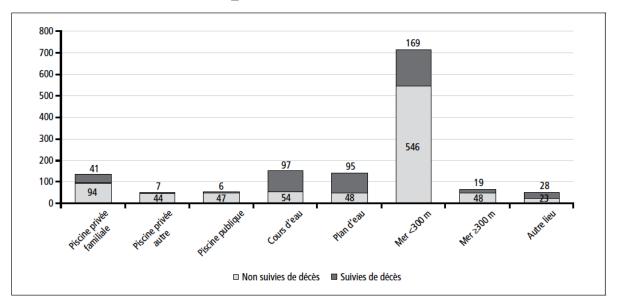

- Pays riches
 - De en les enfants
 - L' Homme > 55 ans
 - Pathologies associés
 - Les conduites à risque
 - L'alcool
 - La ruralité

Drowning, Current Concepts, Szpilman D et al. N Engl J Med 2012; 366:2012-10

La situation française

- Une évaluation épidémiologique bien menée par l'INVES
 - Évaluations en 2009, 2006, 2003, 2004
- Un nombre de noyade stable
 - 1366 en 2009 contre 1207, 1163, 1154
- Un taux de mortalité qui ne diminue pas
 - 34% en 2009 contre 33, 32, 38%
- Mais aucune donnée médicale précise

La situation française


440 noyades chaque année, 23% de mortalité

Source: INVES 2009

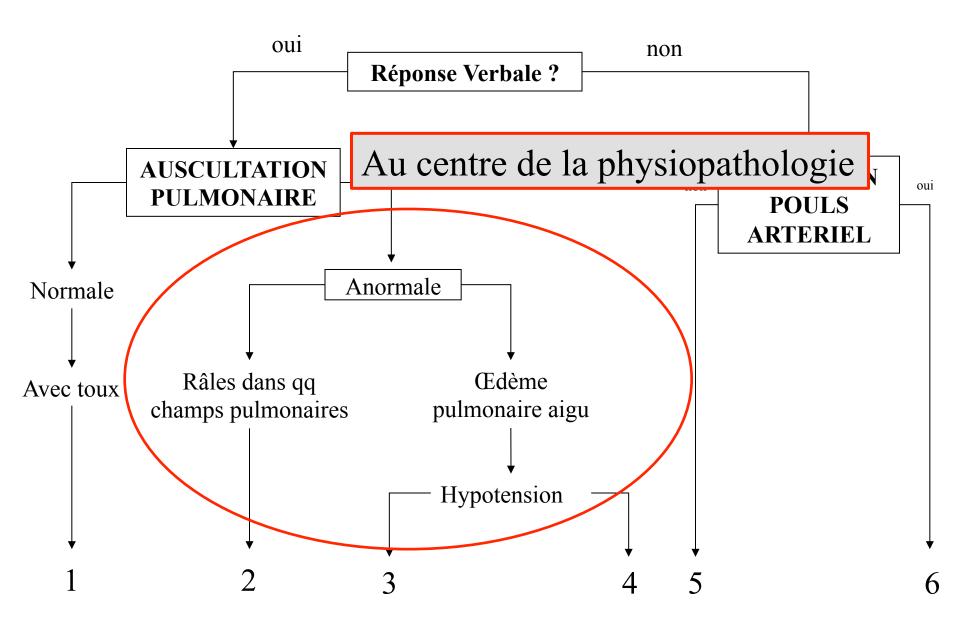
La situation française

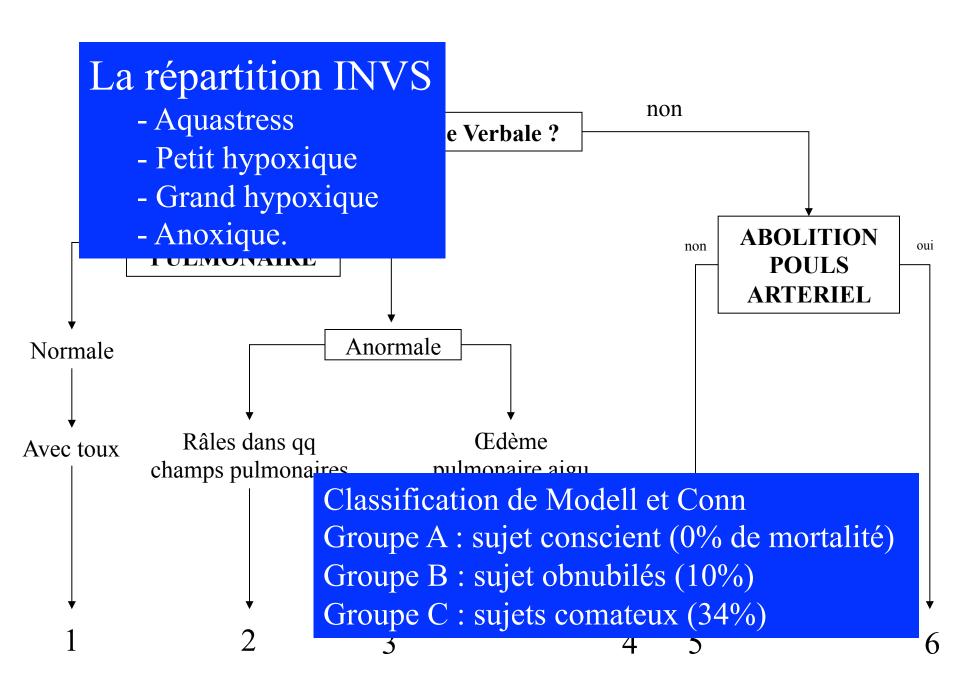
Des constatations

- Homme majeur
- Plutôt en eau de mer
- Beaucoup de circonstances particulières

Intérêts de la situation française

- Données épidémiologiques « solides »
- Définition d'une population « cible » pour nos recherches


Définition – vers la simplification


• La noyade:

Etat résultant d'une insuffisance respiratoire provoquée par la submersion ou l'immersion en milieu liquide

- Défaillance respiratoire aigüe
 - Elément physiopathologique majeur responsable d'une hypoxémie
 - Défaillances viscérales secondaires à l'hypoxémie
 - Arrêt cardiaque
 - Coma et encéphalopathie post-anoxique
 - Défaillance rénale
 - Défaillance hématologique (CIVD)

Algorithme de Szpilman

Physiopathologie – encore méconnue

- Insuffisance respiratoire aiguë: OK
 - Ingestion >> Inhalation
- Insuffisance cardio circulatoire
 - Finalité = Arrêt Cardiaque Hypoxique
 - Mais avant ??
 - Tachycardie : OK
 - Décharge catécholaminergique ??

Physiopathologie

- Cardio circulatoire
 - Décharge catécholaminergique puis vasoplégie
- Respiratoire
 - Œdème lésionnel (?)
 - Pneumopathie d'inhalation
- Métabolique
 - Acidose, hémodilution, Hypernatrémie

Données recueillies auprès de 130 dossiers de noyés

Données biologiques et métaboliques à l'admission

Natrémie (mmol/L)	144 ± 5.6	
Kaliémie (mmol/L)	4.1 ± 0.6	
Lactatémie (mmol/L)	5.3 ± 5.8	
Glycémie (mmol/L)	10 ± 7.2	
Protidémie (g/L)	69.1 ± 10.6	
Créatininémie (mmol/L)	102.6 ± 52	
Urémie (mmol/l)	6.7 ± 3.2	

	Na	K	pН
Eau de mer (n= 126)	145 ± 5	4 ± 0.6	7,23±0,13
Eau douce (n=23)	132 ± 4	$4,3 \pm 0,6$	7,13±0,19

Drowning

David Szpilman, M.D., Joost J.L.M. Bierens, M.D., Ph.D., Anthony J. Handley, M.D., and James P. Orlowski, M.D.

Plus d'allusion précise

N Engl J Med 2012;366:2102-10.

Physiopathologie

- Cardio circulatoire
 - Décharge catécholaminergique puis vasoplégie
- Respiratoire
 - Œdème lésionel (?)
 - Pneumopathie d' inhalation
- Métabolique
 - Acidose, hémodilution, Hypernatrémie
- Cérébral
 - Hypoxémie, hypotension, arrêt cardiaque
 - Edème cérébral, HTIC

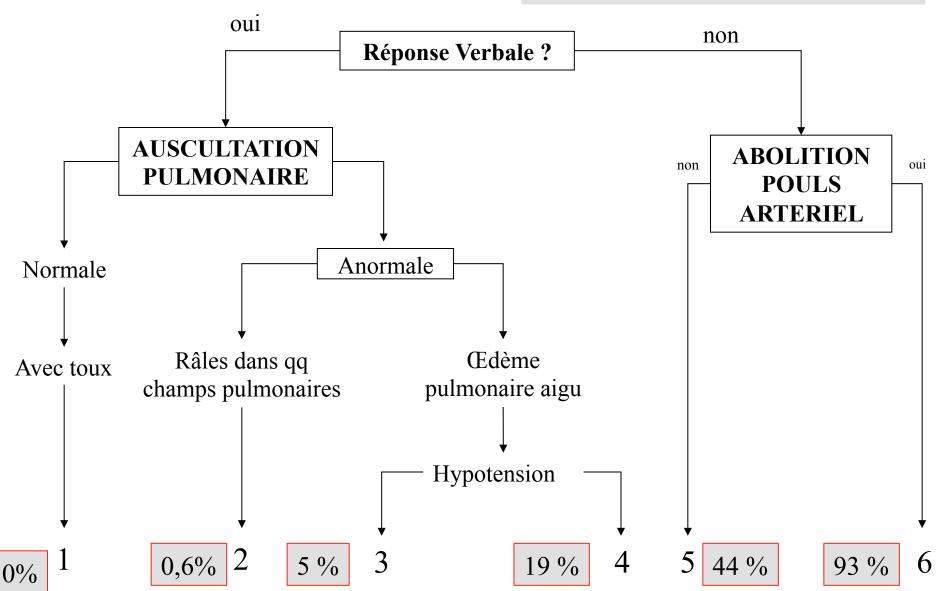
Physiopathologie - Classification

Etat résultant d'une insuffisance respiratoire provoquée par la submersion ou l'immersion en milieu liquide

- La classification ne devrait-elle pas mettre la détresse respiratoire au centre de la réflexion ?
- Pour le moment c'est l'évaluation neurologique qui l'est!

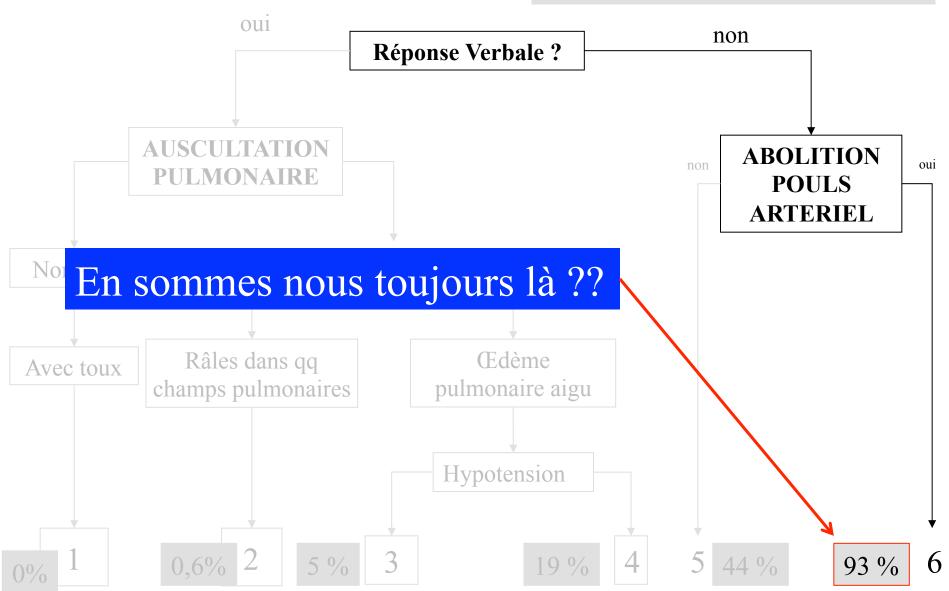
• Fonction de la durée d'immersion

Durée de l' Immersion (min)	Probabilité de décès ou d' Handicap neurologique sévère
0 à 5 minutes	10 %
5 à 10 minutes	56 %
10 à 25 minutes	88 %
> 25 minutes	99,9 %


Kalièmie > 10 mmol/l à l' admission

Szpilman D. et al Chest 1997; 112: 660-665

- Fonction de la durée d'immersion
- Fonction du stade de gravité lors de la prise en charge


Algorithme de Szpilman

Szpilman D. et al Chest 1997; 112 : 660-665

Algorithme de Szpilman

Szpilman D. et al Chest 1997; 112 : 660-665

Comparison of the characteristics and outcome among patients suffering from out-of-hospital primary cardiac arrest and drowning victims in cardiac arrest

Štefek Grmec • Matej Strnad • Dejan Podgoršek Int J Emerg Med (2009) 2:7–12

Différences ACEH vs ACNoyade (Slovénie):

- Patients Noyés plus jeunes $(46.5 \pm 21.4 \text{ vs } 62.5 \pm 15.8; p=0.01)$
- AC sans témoin plus fréquemment (9/32 vs 343/528; p=0.03)
- Sont retrouvés plus fréquemment en rythme non chocable (29/32 vs 297/528; p<0.0001),
- Présentent un temps de réponse médical primaire plus long (11 vs 6 min; p=0.001),
- Présentent une tendance plus importante à la récupération d'une hémodynamique sur les lieux de l'accident [22/32 (65%) vs 301/528 (57%); p=0.33],
- Présentent une survie plus élevée (en sortie d' hôpital) [14/32 (44%) vs 116/528 (22%); p=0.01].
- Ont une valeur initiale de PETCO2 supérieure ($53.2 \pm 16.8 \text{ vs } 15.8 \pm 8.3 \text{ mmHg}$; p<0.0001). Ces valeurs confirmant l'origine asphyxique de l'arrêt cardiaque.

Étude rétrospective sur 3 ans 7 réanimations de la côte méditerranéenne

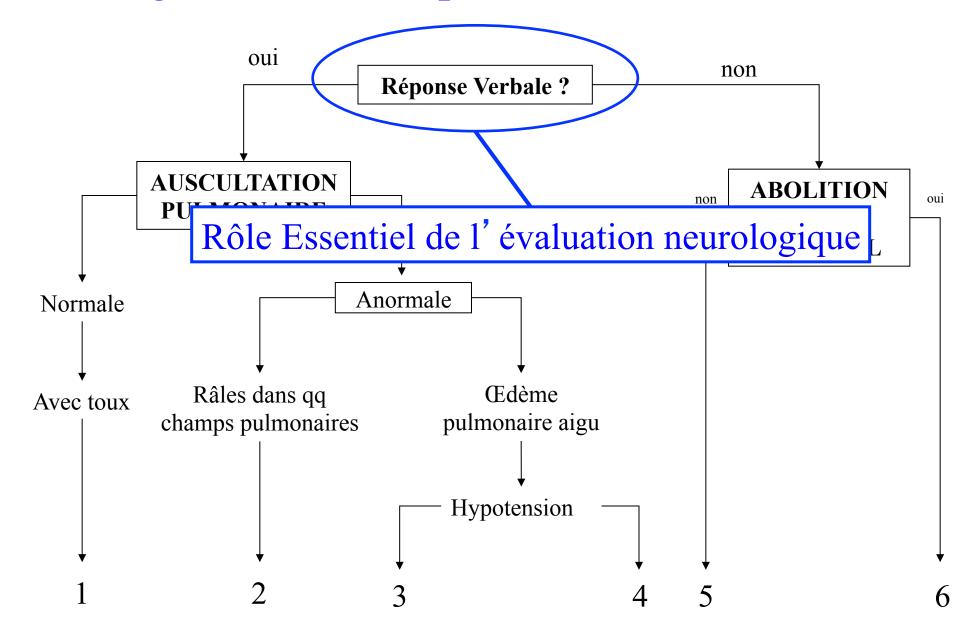
Détresse Respiratoire Aigue Post Noyade (n=126)

38 patients en ACR médicalisé

60% de mortalité à 28 jours

> 15 % de survie globale en incluant les ACR non récupérés sur place

VS


93 % de mortalité dans la série de Szpilman

Amélioration du pronostic?

- Mesures de prévention
 - Piscines privées, baïnes ...
- Rapidité d'intervention
 - MNS, SDIS, SMUR...
- Respect des recommandations
 - 5 insufflations puis alternance 30/2
- Prise en charge thérapeutique ??

- Fonction de la durée d'immersion
- Fonction du stade de gravité lors de la prise en charge
 - neurologique

Algorithme de Szpilman

Prognostic factors and outcome after drowning in an adult population

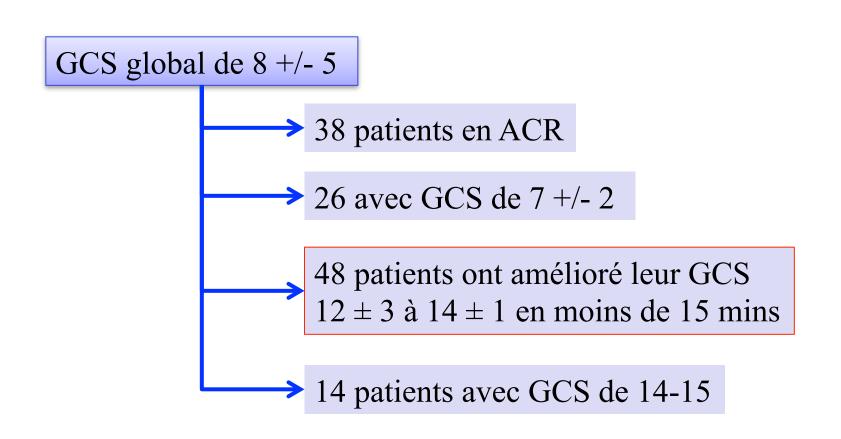
M. A. BALLESTEROS et al. Acta Anaesthesiol Scand 2009; 53: 935–940

Results: There were 43 patients (five children and 38 adults), with male predominance. Fifteen patients, all adults (34.9%), died

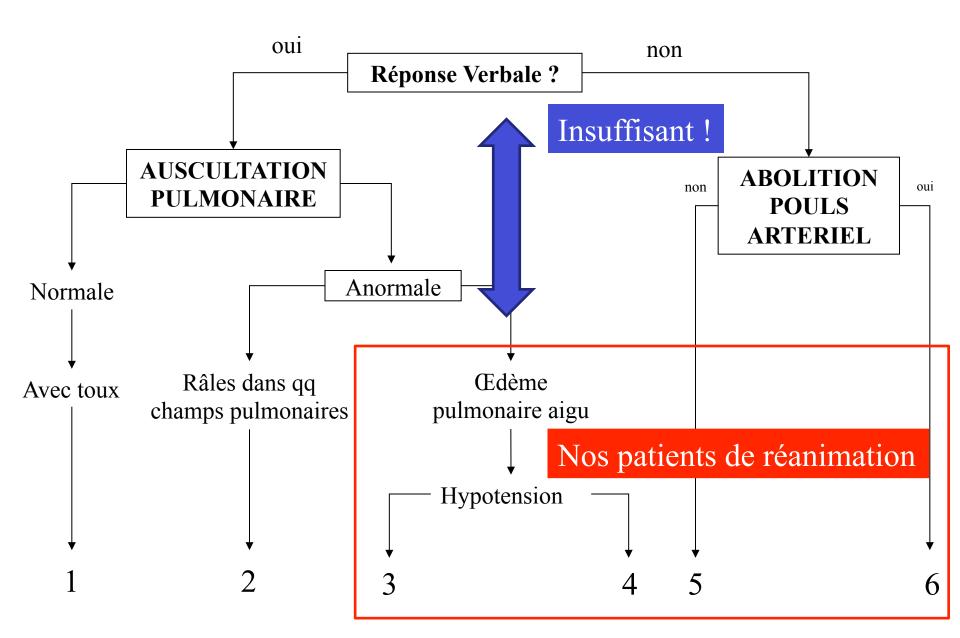
Table 3

Univariant analysis of the main variables.					
	N	β	SE	OR (95% CI)	Р
Constant			0.320		
Age (years)	43	0.041	0.017	1.04 (1.01-1.08)	0.018
Submersion time (minutes)	30	0.350	0.138	1.42 (1.08–1.86)	0.011
Water temperature (°C)	22		0.253	0.61 (0.37-0.99)	0.047
Glycaemia (mg/dl)	34	0.014	0.006	1.01 (1.00-1.03)	0.013
GCS (points)	42		0.113	0.641 (0.51-0.80)	< 0.005
No pupillary reactivity	41	3.376	0.948	29.25 (4.56-187.70)	< 0.005
APACHE II score (points)	34	0.296	0.091	1.34 (1.13–1.61)	0.001

OR is expressed with respect to each increase or decrease in the unit of measurement in which the variable is expressed. APACHE II, acute physiology and chronic health evaluation; GCS, Glasgow Coma Score; β , logistic regression coefficient; SE, standard error; OR, odds ratio.


- Fonction de la durée d'immersion
- Fonction du stade de gravité lors de la prise en charge
 - Neurologique
 Témoin de l'asphyxie
 Intubation Ventilation Mécanique

Peut-on influencer sur ce statut neurologique?


Étude rétrospective sur 3 ans

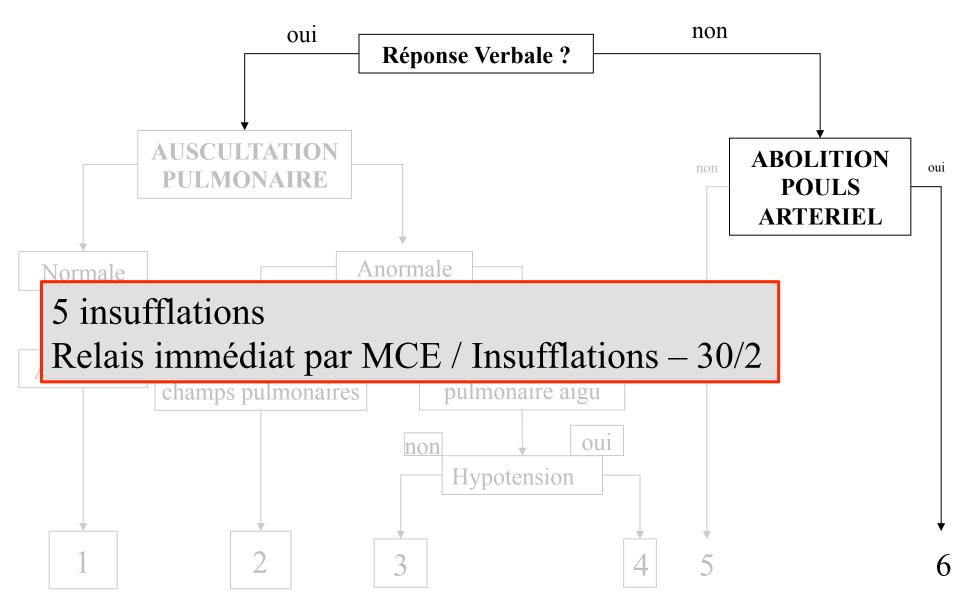
7 réanimations de la côte méditerranéenne

Détresse Respiratoire Aigue Post Noyade (n=126)

Algorithme de Szpilman

Pronostic des Noyades

- En amélioration malgré de grande disparités
- La rapidité d'action des secours est essentielle
- Le statut neurologique est au centre du pronostic
 - Il est le reflet de l'hypoxémie
 - Il est probablement modifiable
- Il n'existe pas données scientifiques quant à l'intérêt de l'hypothermie thérapeutique



Prise en Charge Thérapeutique

Drowning

N Engl J Med 2012;366:2102-10.

David Szpilman, M.D., Joost J.L.M. Bierens, M.D., Ph.D., Anthony J. Handley, M.D., and James P. Orlowski, M.D.

Table 1. Use of CPR in Cases of Drowning.*		
CPR	Recommendation	
When to initiate	Initiate ventilation in persons with respiratory distress or respiratory arrest in order to prevent cardiac arrest ^{21,29}	
	Initiate CPR in persons who have been submerged for <60 min and who do not have obvious physical evidence of death (rigor mortis, body decomposition, or livor mortis) ^{21,29}	
When to discontinue	Continue basic life support unless signs of life reappear, rescuers are exhausted, or advanced-life-support team takes over	
	Continue advanced life support until patient has been rewarmed (if hypothermic) and asystole has persisted	

for $>20 \text{ min}^{28}$

During drowning, a reduction of brain temperature by 10°C decreases ATP consumption by approximately 50%, doubling the duration of time that the brain can survive

Duration of submersion and risk of death or severe neurologic impairment after hospital discharge

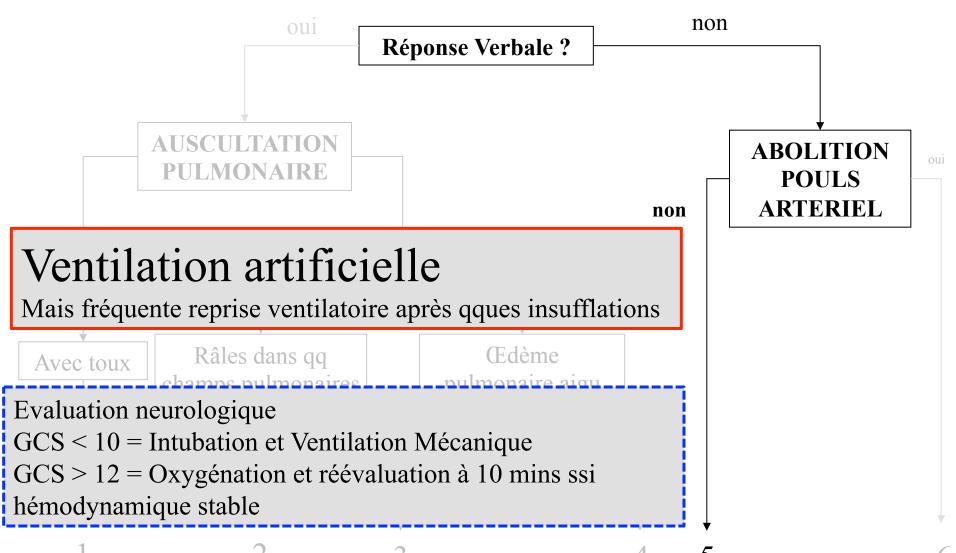
0-5 min — 10%

6–10 min — 56%

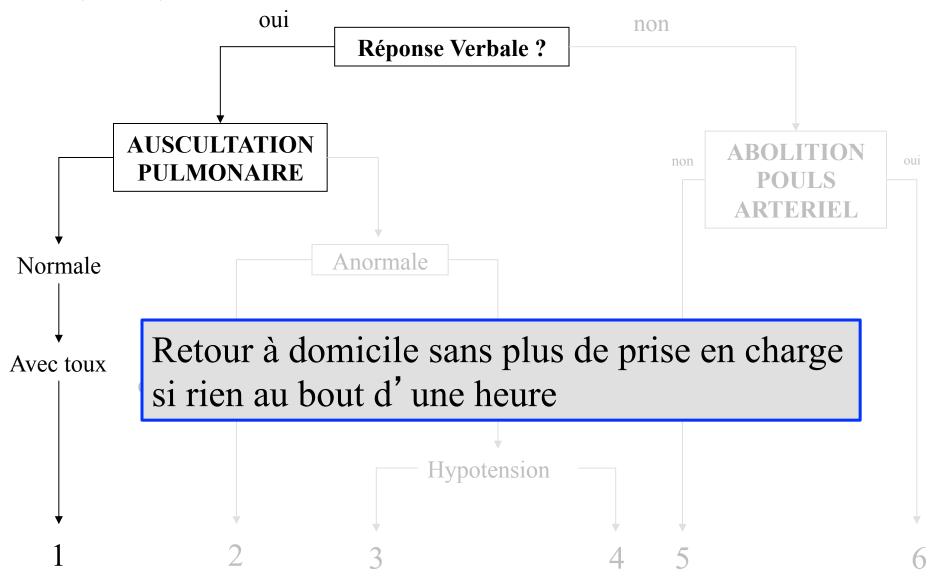
11–25 min — 88%

>25 min — nearly 100%

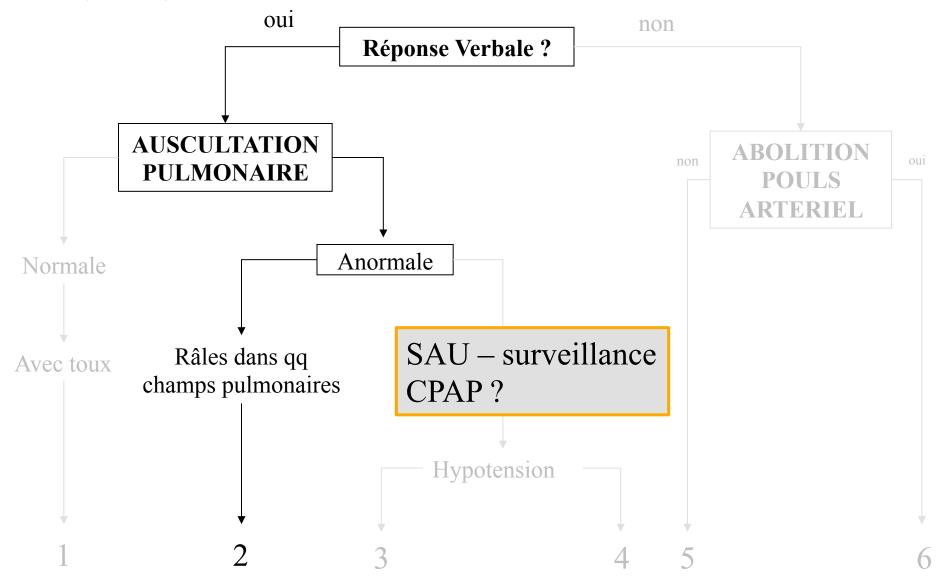
Drowning

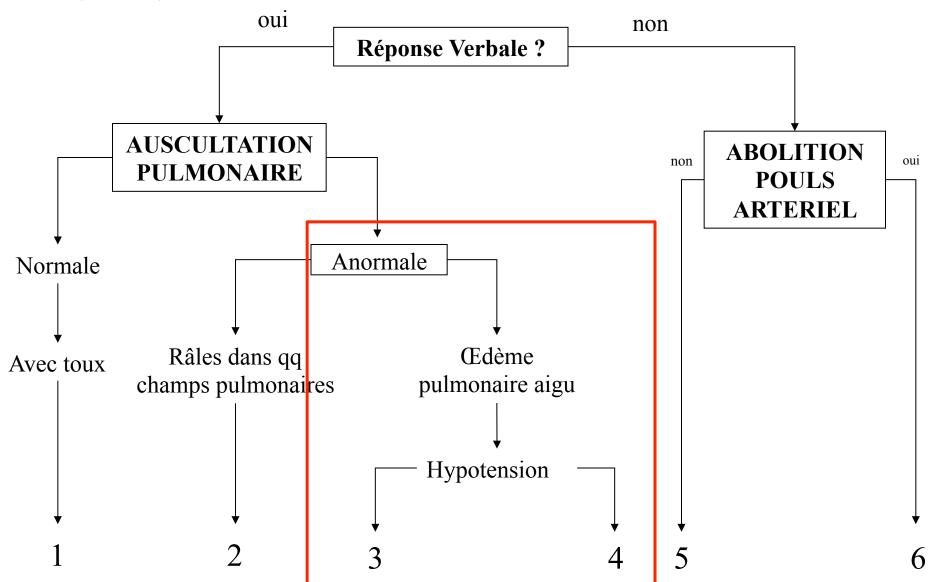

David Szpilman, M.D., Joost J.L.M. Bierens, M.D., Ph.D., Anthony J. Handley, M.D., and James P. Orlowski, M.D.

N Engl J Med 2012;366:2102-10.

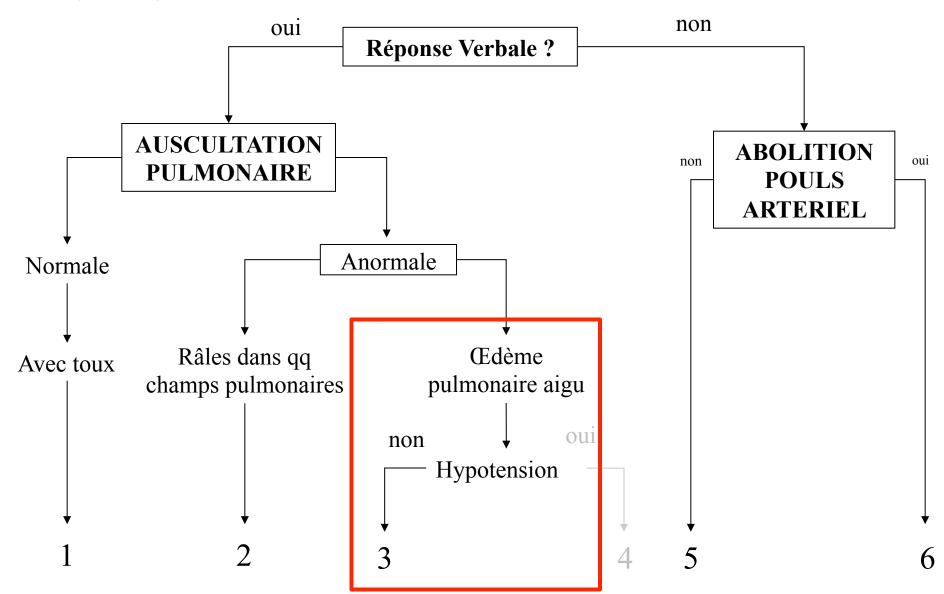

Drowning

N Engl J Med 2012;366:2102-10.

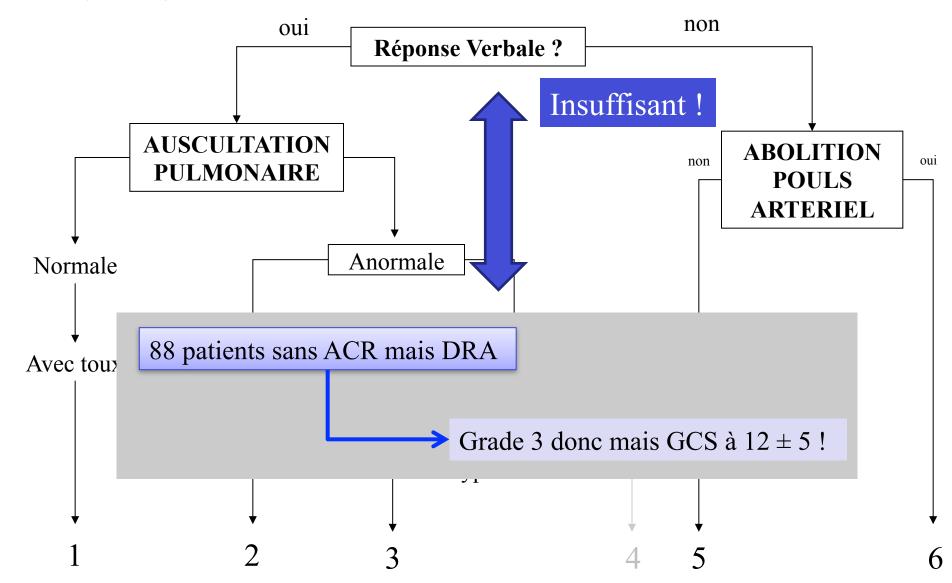

David Szpilman, M.D., Joost J.L.M. Bierens, M.D., Ph.D., Anthony J. Handley, M.D., and James P. Orlowski, M.D.


N Engl J Med 2012;366:2102-10.

N Engl J Med 2012;366:2102-10.



N Engl J Med 2012;366:2102-10.



	ACR	Pas d'ACR	P
pH initial	7.11	7.27	< 0.001
PaCO2 initiale (mmol/L)	49	46	NS
PaO2/FiO2	217	155	0.052
Température corporelle initiale (°C)	34.6	36.6	< 0.001
PAM HO (mmHg)	84	90	NS
Fréquence cardiaque HO (/min)	91	93	NS
Remplissage vasculaire 24h (litre)	2.5	0.7	< 0.001
Jours avec amines	3	0.3	< 0.001
Défaillance cardiaque	40 %	3 %	< 0.001
Glycémie (mmol/L)	14.3	8	< 0.001
Lactatémie (mmol/L)	8.6	3.5	< 0.001
Protidémie (g/L)	64	71	< 0.05
Diurèse (mL)	2030	1550	< 0.05
SAPS2	65	33	< 0.05
SOFA	11	4	< 0.05
Durée de séjour en réanimation (jour)	12	3	< 0.05
Mortalité à 28 jours	60 %	0 %	< 0.05

N Engl J Med 2012;366:2102-10.

N Engl J Med 2012;366:2102-10.

Pronostic des patients

En France : basée sur la DRA

- 1 163 noyades accidentelles
 - 25 % décès sur place

DRA + altération de la Conscience

- -870 (75 %) hospitalisations:
 - 230 au stade « grande noyade »:
 - 30 % décès
 - 4 % séquelles

Réanimation

- 585 au stade « petite noyade » ou aquastress:
 - Aucun décès
 - 7 personnes ont des séquelles

Urgences?

Surveillance épidémiologique des noyades-InVS

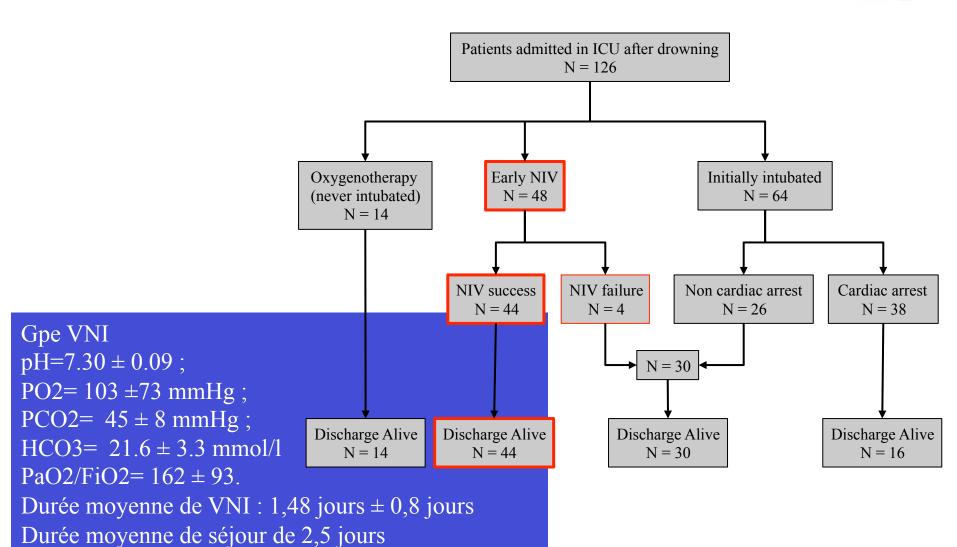
Prise en charge des patients

- Arrêt cardio respiratoire
 - 5 insufflations puis 30/2 immédiatement
- Détresse respiratoire
 - Quel niveau ?
 - Intubation et VM pour tous ?
 - Place de la VNI ?

Quelques données pour illustrer le débat

Données descriptives générales

Données biologiques et métaboliques à l'admission


Natrémie (mmol/L)	144 ± 5.6
Kaliémie (mmol/L)	4.1 ± 0.6
Lactatémie (mmol/L)	5.3 ± 5.8
Glycémie (mmol/L)	10 ± 7.2
Protidémie (g/L)	69.1 ± 10.6
Créatininémie (mmol/L)	102.6 ± 52
Urémie (mmol/l)	6.7 ± 3.2
рН	7.22 ± 0.14
PaCO2 (mmHg)	47 ± 9.6
Rapport PaO2/FiO2	182 ± 125

(moyenne \pm écart-type)

Étude rétrospective sur 3 ans

7 réanimations de la côte méditerranéenne

VNI vs VC

	VNI	VC	P
pH initial	7.30 ± 0.09	7.23 ± 0.09	0.002
PaCO2 initiale (mmol/L)	45 ± 8	51 ± 10	0.004
PaO2/FiO2	162 ± 93	144 ± 93	NS
Température corporelle initiale (°C)	36.7 ± 1.4	36.2 ± 1.5	0.056
PAM HO (mmHg)	96 ± 18	78 ± 18	< 0.001
Fréquence cardiaque HO (/min)	92 ± 24	88 ± 26	NS
Remplissage vasculaire 24h (litre)	0.5 ± 0.6	1.5 ± 1.4	0.001
Jours avec amines	0.1 ± 0.4	0.9 ± 1.3	< 0.001
Lactatémie (mmol/L)	2.9 ± 1.9	3.5 ± 2.4	NS
SAPS2	29 ± 9	50 ± 20	< 0.001
SOFA	2 ± 1.6	6 ± 3.6	0.009
Durée de séjour en réanimation (jour)	2.5 ± 2.1	4 ± 2.4	0.002

Intérêt certain Il faut faire (G1+) Décompensation de BPCO OAP cardiogénique

Intérêt non établi de façon certaine Il faut probablement faire (G2+)

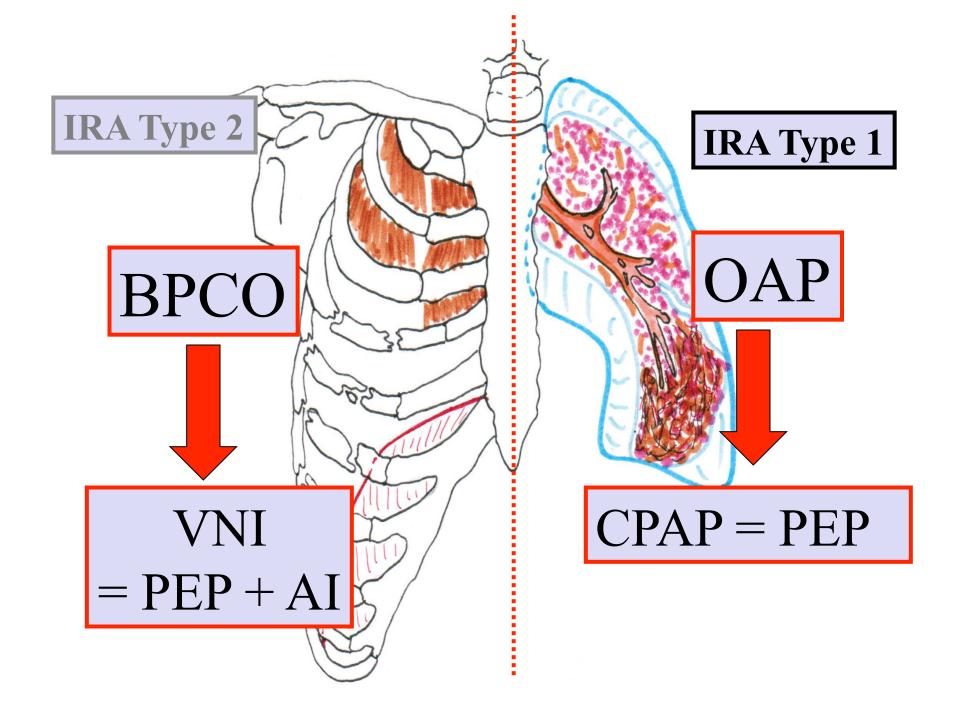
IRA hypoxémique de l'immunodéprimé Post-opératoire de chirurgie thoracique et abdominale

Stratégie de sevrage de la ventilation invasive chez les BPCO

Prévention d'une IRA post extubation

Traumatisme thoracique fermé isolé

Décompensation de maladies neuromusculaires chroniques et autres IRC restrictives


Mucoviscidose décompensée Forme apnéisante de la bronchiolite aiguë Laryngo-trachéomalacie

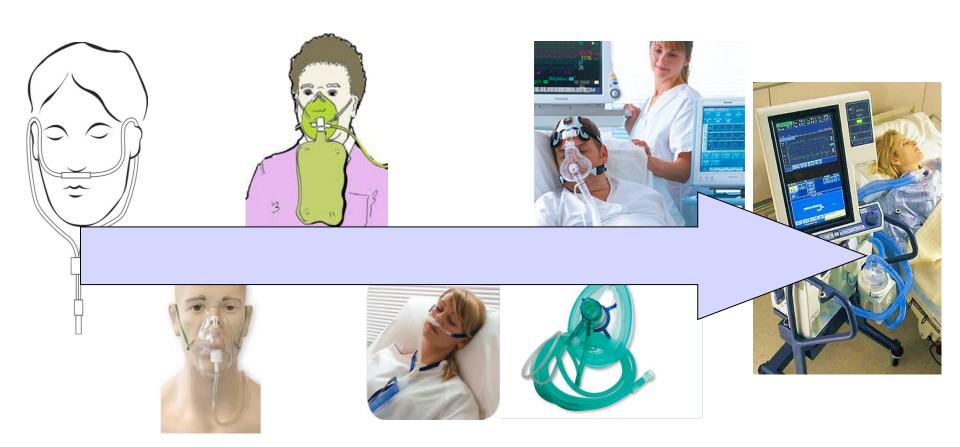

Quand savoir passer à la VA classique

Tableau 4 – Critères associés à un risque d'échec accru				
Indication	À l'admission	Réévaluation précoce		
Décompensation de BPCO	pH < 7,25 FR > 35 cycles/min GCS < 11 Pneumonie Comorbidités cardio-vasculaires Score d'activité physique quotidienne défavorable.	À la 2' heure : pH < 7,25, FR > 35 cycles/min GCS < 11		
IRA hypoxémique sur cœur et poumons antérieurement sains	Age > 40 ans FR > 38 cycles/min Pneumonie communautaire Sepsis IRA post-opératoire par complication chirurgicale	À la 1" heure : PaO ₂ /FiO ₃ < 200 minifg		

Des indications en devenir

- Les indication de « réanimation »
- VNI et limitation thérapeutique pré H.
 - Duchateau FX. et al Eur J Emerg Med 2010; 17:7 − 9
 - Amélioration oxygénation et confort
 - Schettino G. et al Crit Care Med 2005; 33: 1976 82
- VNI et Traumatisme Thoracique
 - Hernandez G. et al Chest 2010; 137 : 74-80
 - Réduction de l' intubation OR = 0.12 [0.02 0.61]
 - Réduction de la durée de séjour en réanimation
- La Noyade

Un support adapté au type et à la gravité de l'atteinte

Type de Ventilateur	Modes Proposés	Touche ACR	Écran de Monitorage	Capnographi e Intégrée
ELISEE 350	VAC, VPC, VNI, VSAI, CPAP	Non	Oui	Non
HAMILTON	VAC, VPC, VNI, VSAI, ASV	Non	Oui	Oui
C1	VAC, VPC, VSAI, CPAP, BiPAP	Oui	Oui	Non
IVENT 201	VAC, VPC, VNI, , VSAI, Bilevel,	Oui	Oui	Oui
MEDUMAT	VCRP	Non	Oui	Non
OXYLOG	VAC, VPC, VNI, VSAI, VACI,	Non	Oui	Non
3000+	BIPAP	Oui	Oui	Oui
OSIRIS 3	VAC, VPC, VSAI	Non	Non	Non
MONNAL T60 VAC, VPC, VSAI, VNI	Oui	Oui	Oui	

Conclusions

- Noyade : pathologie circonstancielle en pleine actualité
- Données épidémiologiques robuste en France
- Données cliniques manquantes
 - Pronostic pas si sombre
- Place de la détresse respiratoire à mettre en avant
 - Stratégie ventilatoire à préciser
 - Probable place de la VNI