Actualités sur la prise en charge du choc septique

Antoine Roch

SAU- Réanimation DRIS

ix*Marseille

CHU Nord

Marseille

Brun Buisson et al., Ann Fr Anesth Reanim 2006

Aix*****Marseille

université

Physiopathologie

- Inflammation
- Atteinte endothéliale
- Tb coagulation

Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012

SURVIVING SEPSIS CAMPAIGN CARE BUNDLES

TO BE COMPLETED WITHIN 3 HOURS:

1) Measure lactate level

2) Obtain blood cultures prior to administration of antibiotics

3) Administer broad spectrum antibiotics

4) Administer 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L

TO BE COMPLETED WITHIN 6 HOURS:

5) Apply vasopressors (for hypotension that does not respond to initial fluid resuscitation) to maintain a mean arterial pressure (MAP) ≥ 65 mm Hg
6) In the event of persistent arterial hypotension despite volume resuscitation (septic shock) or initial lactate ≥ 4 mmol/L (36 mg/dL):

- Measure central venous pressure (CVP)*

- Measure central venous oxygen saturation (ScvO₂)*

7) Remeasure lactate if initial lactate was elevated*

*Targets for quantitative resuscitation included in the guidelines are CVP of ≥ 8 mm Hg, ScvO₂ of $\ge 70\%$, and normalization of lactate.

Critical Care in the Emergency Department: A Physiologic Assessment and Outcome Evaluation

ACADEMIC EMERGENCY MEDICINE • December 2000, Volume 7, Number 12

• Ne pas considérer que la rea va venir, donc on peut ne plus rien faire

 Ce n' est pas parce que qu' un patient s améliore vite qu' il ne nécessite pas la rea par la suite

Arrêter le processus infectieux

- Antibiothérapie (< 1 h du diagnostic)</p>
- Contrôle du foyer infectieux (6 h)

Dellinger et al., Intensive Care Med 2013

Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock

Anand Kumar, MD; Daniel Roberts, MD; Kenneth E. Wood, DO; Bruce Light, MD; Joseph E. Parrillo, MD; Crit Care Med 2006 Vol. 34, No. 6

• 2750 patients en choc septique, rétrospectif en réanimation

Effect of Empirical Treatment With Moxifloxacin and Meropenem vs Meropenem on Sepsis-Related Organ Dysfunction in Patients With Severe Sepsis

No difference SOFA score Mortality D28 Mortality D90 No effect of combination

No positive RCTs

Brunkhorst et al. JAMA 2012

Contrôle foyer infectieux

- 10
- aussi rapidement que possible (6 h)
 - à rechercher chez tous les patients
 - imagerie rapide
 - retrait cathéter intravasculaire, PAC...

- Arrêter le processus infectieux
 - Antibiothérapie (1 h)
 - Contrôle du foyer infectieux (6 h)
 - Conduire la réanimation hémodynamique
 - Objectifs hémodynamiques (1 et 6 h)
 - Prise en charge (6 h)

Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012

SURVIVING SEPSIS CAMPAIGN CARE BUNDLES

TO BE COMPLETED WITHIN 3 HOURS:

1) Measure lactate level

2) Obtain blood cultures prior to administration of antibiotics

3) Administer broad spectrum antibiotics

4) Administer 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L

TO BE COMPLETED WITHIN 6 HOURS:

5) Apply <u>vasopressors</u> (for hypotension that does not respond to initial fluid resuscitation) to maintain a mean arterial pressure (MAP) \ge 65 mm Hg 6) In the event of persistent arterial hypotension despite volume resuscitation (septic shock) or initial lactate \ge 4 mmol/L (36 mg/dL):

- Measure central venous pressure (CVP)*

- Measure central venous oxygen saturation (ScvO₂)*

7) Remeasure lactate if initial lactate was elevated*

*Targets for quantitative resuscitation included in the guidelines are CVP of ≥ 8 mm Hg, ScvO₂ of \ge 70%, and normalization of lactate.

« Survivre au sepsis »

- ► **PAM** ≥ 65 mmHg (1 h)
- ► **Diurèse horaire** \ge 0,5 ml/kg/h (6 h)
- ▶ PVC : 8 12 mmHg ou équivalent (1 h)

ScvO₂ ≥ 70 % (6 h) ET Lactate < 20% (2h)</p>

Dellinger et al., Intensive Care Med 2013

Cristalloïde

Aix Marse

Hydroxyethyl Starch or Saline for Fluid Resuscitation in Intensive Care

Myburgh et al., N Engl J Med 2013

Hydroxyethyl Starch 130/0.42 versus Ringer's Acetate in Severe Sepsis

Albumin Replacement in Patients with Severe Sepsis or Septic Shock

NEJM march 18, 2014

- 1800 patients
- albumine si > 30 g/l vs si < 20 g/l

Albumin Replacement in Patients with Severe Sepsis or Septic Shock

NEJM march 18, 2014

- 1800 patients
- albumine si > 30 g/l vs si < 20 g/l

Noradrénaline

Dellinger et al., Intensive Care Med 2013

Aix Marseille De Backer *et al.*, N Engl J Med 2010; Martin *et al.*, Crit Care Med 1993; Martin *et al.*, Crit Care Med 2000; 2008; Sakr *et al.*, Crit Care Med 2006

PAM ≥ 65 mmHg

Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients

Aix*****Marseille

MAP 54 ± 8 mmHg *vs.* 77 ± 9 mmHg

Georger et al., Intensive Care Med 2010

High versus Low Blood-Pressure Target in Patients with Septic Shock

NEJM march 18, 2014

Pierre Asfar, M.D., Ph.D., Ferhat Meziani, M.D., Ph.D., Jean-François Hamel, M.D.,

65-70 mmHg

80-85 mmHg

Jusqu' à J5 ou sevrage vasopresseurs

Characteristic	Low-Target Group (N = 388)	High-Target Group (N = 388)
Vasoactive drug infusions at randomization — no. (%)		
Norepinephrine	368 (94.8)	373 (96.1)
Epinephrine	20 (5.2)	15 (3.9)
Dobutamine	21 (5.4)	16 (4.1)
Median vasopressor dose at randomization — μ g/kg/min (IQR)		
Norepinephrine	0.35 (0.20-0.61)	0.40 (0.20–0.62)
Epinephrine	0.23 (0.17–0.32)	0.22 (0.13-0.64)
Mechanical ventilation — no. (%)	286 (73.7)	308 (79.4)

Days

High versus Low Blood-Pressure Target in Patients with Septic Shock

NEJM march 18, 2014

Pierre Asfar, M.D., Ph.D., Ferhat Meziani, M.D., Ph.D., Jean-François Hamel, M.D.,

Variable	Low-Target Group (N=388)	High-Target Group (N=388)	P Value
Cumulative fluid intake from day 1 to day 5 — liters	10.0 (5.8–14.0)	10.5 (5.5–14.0)	0.89
Cumulative urine output from day 1 to day 5 — liters	6.7 (2.9–10.7)	6.9 (2.4–10.7)	0.87
Cumulative fluid balance from day 1 to day 5 — liters	2.8 (0.0–6.2)	2.4 (0.0–6.0)	0.74
Median dose of norepinephrine (IQR) — μ g/kg/min			
Day 1	0.45 (0.17-1.21)	0.58 (0.26–1.80)	< 0.001
Day 2	0.16 (0.03-0.48)	0.38 (0.14–0.90)	< 0.001
Day 3	0.02 (0.00-0.16)	0.14 (0.01-0.50)	< 0.001
Day 4	0.00 (0.00-0.05)	0.03 (0.00-0.22)	< 0.001
Day 5	0.00 (0.00-0.03)	0.01 (0.00-0.15)	< 0.001
Duration of catecholamine infusion — days	3.7±3.2	4.7±3.7	< 0.001
Primary outcome: death at day 28 — no. (%)*	132 (34.0)	142 (36.6)	0.57
Secondary outcomes — no./total no. (%)			
Death at day 90†	164 (42.3)	170 (43.8)	0.74
Survival at day 28 without organ support‡	241 (62.1)	235 (60.6)	0.66
Doubling of plasma creatinine	161 (41.5)	150 (38.7)	0.42
No chronic hypertension	71/215 (33.0)	85/221 (38.5)	0.32
Chronic hypertension	90/173 (52.0)	65/167 (38.9)	0.02
Renal-replacement therapy from day 1 to day 7	139 (35.8)	130 (33.5)	0.50
No chronic hypertension	66/215 (30.7)	77/221 (34.8)	0.36
Chronic hypertension	73/173 (42.2)	53/167 (31.7)	0.046
Serious adverse events — no. (%)			
Any	69 (17.8)	74 (19.1)	0.64
Acute myocardial infarction	2 (0.5)	7 (1.8)	0.18
Atrial fibrillation	11 (2.8)	26 (6.7)	0.02
Ventricular fibrillation or tachycardia	15 (3.9)	22 (5.7)	0.24
Digital ischemia	9 (2.3)	10 (2.6)	0.82
Mesenteric ischemia	9 (2.3)	9 (2.3)	1.00
Bleeding	42 (10.8)	31 (8.0)	0.22

Table 2. Clinical Results, Primary and Secondary Outcomes, and Serious Adverse Events.

« Survivre au sepsis »

- ► **PAM** ≥ 65 mmHg (1 h)
- ► **Diurèse horaire** \ge 0,5 ml/kg/h (6 h)
- ▶ PVC : 8 12 mmHg ou équivalent (1 h)

ScvO₂ ≥ 70 % (6 h) ET Lactate < 20% (2h)</p>

Dellinger et al., Intensive Care Med 2013

Optimisation hémodynamique

Rivers, New Engl J Med, 2001

TREATMENT	HOURS AFTER THE START OF THERAPY			
	0-6	7-72	0-72	
Total fluids (ml)				
Standard therapy	3499±2438	$10,602\pm6,216$	13,358±7,729	
EGDT	4981±2984	$8,625\pm5,162$	$13,443\pm6,390$	
P value	< 0.001	0.01	0.73	
Red-cell transfusion (%)				
Standard therapy	18.5	32.8	44.5	
EGDT	64.1	11.1	68.4	
P value	< 0.001	< 0.001	< 0.001	
Any vasopressor (%)†				
Standard therapy	30.3	42.9	51.3	
EGDT	27.4	29.1	36.8	
P value	0.62	0.03	0.02	
Inotropic agent (dobuta- mine) (%)			_	
Standard therapy	0.8	8.4	9.2	
EGDT	13.7	14.5	15.4	
P value	< 0.001	0.14	0.15	
Mechanical ventilation (%)				
Standard therapy	53.8	16.8	70.6	
EGDT	53.0	2.6	55.6	
P value	0.90	< 0.001	0.02	

VARIABLE	STANDARD THERAPY (N=133)	EARLY GOAL-DIRECTED THERAPY (N= 130)	
	no. (9	6)	
In-hospital mortality† All patients	59 (46.5)	38 (30.5)	

ORIGINAL ARTICLE

A Randomized Trial of Protocol-Based Care for Early Septic Shock

The ProCESS Investigators*

NEJM march 18, 2014

- 31 SAU aux USA
- Sepsis+ hypotension < 90 mmHg après remplissage ou nécessitant vasopresseurs ou avec lactate > 4 mmol/l
- Inclusion dans les 2 h suivant le début du sepsis

ORIGINAL ARTICLE

A Randomized Trial of Protocol-Based Care for Early Septic Shock

The ProCESS Investigators*

NEJM march 18, 2014

Figure S1. - Protocol for early goal-directed therapy (EGDT)

Table 1. Characteristics of the Patients at Baseline.*						
Characteristic	Protocol-Based EGDT (N=439)	Protocol-Based Standard Therapy (N=446)	Usual Care (N=456)			
Age — yr†	60±16.4	61±16.1	62±16.0			
Male sex — no. (%)	232 (52.8)	252 (56.5)	264 (57.9)			
Residence before admission — no. (%)‡						
Nursing home	64 (14.6)	72 (16.1)	73 (16.0)			
Other	373 (85.0)	373 (83.6)	382 (83.8)			
Charlson comorbidity score§	2.6±2.6	2.5±2.6	2.9±2.6			
Source of sepsis — no. (%)						
Pneumonia	140 (31.9)	152 (34.1)	151 (33.1)			
Urinary tract infection	100 (22.8)	90 (20.2)	94 (20.6)			
Intraabdominal infection	69 (15.7)	57 (12.8)	51 (11.2)			
Infection of unknown source	57 (13.0)	47 (10.5)	66 (14.5)			
Skin or soft-tissue infection	25 (5.7)	33 (7.4)	38 (8.3)			
Catheter-related infection	11 (2.5)	16 (3.6)	11 (2.4)			
Central nervous system infection	3 (0.7)	3 (0.7)	4 (0.9)			
Endocarditis	1 (0.2)	3 (0.7)	3 (0.7)			
Other	28 (6.4)	31 (7.0)	26 (5.7)			
Determined after review not to have infection	5 (1.1)	14 (3.1)	12 (2.6)			
Positive blood culture — no. (%)	139 (31.7)	126 (28.3)	131 (28.7)			
APACHE II score¶	20.8±8.1	20.6±7.4	20.7±7.5			
Entry criterion — no. (%)						
Refractory hypotension	244 (55.6)	240 (53.8)	243 (53.3)			
Hyperlactatemia	259 (59.0)	264 (59.2)	277 (60.7)			
Physiological variables						
Systolic blood pressure — mm Hg	100.2±28.1	102.1±28.7	99.9±29.5			
Serum lactate — mmol/liter**	4.8±3.1	5±3.6	4.9±3.1			
Time to randomization — min						
From arrival in the emergency department $\dagger \dagger$	197±116	185±112	181±97			
From meeting entry criteria	72±77	66±38	69±45			

Remplissage 2 I avant randomisation

A Cumulative In-Hospital Mortality to 60 Days

Inotropisme

Dellinger et al., Intensive Care Med 2013 ; Rivers et al., N Engl J Med 2001

Hyperdébit = Surmortalité

Aix Marseille

Hayes et al., N Engl J Med 1994

Surmortalité ? **Comment gérer l'hyperdébit ?** Demande énergétique **B-bloquants** Hypothermie

Preliminary Communication | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Heart Rate Control With Esmolol on Hemodynamic and Clinical Outcomes in Patients With Septic Shock A Randomized Clinical Trial

IVSE pour FC < 95 /min

Aix Marseille

Preliminary Communication | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Heart Rate Control With Esmolol on Hemodynamic and Clinical Outcomes in Patients With Septic Shock A Randomized Clinical Trial

Preliminary Communication | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Heart Rate Control With Esmolol on Hemodynamic and Clinical Outcomes in Patients With Septic Shock A Randomized Clinical Trial

Aix*****Marseille université

Aix*****Marseille université

Morelli et al., Crit Care Med 2013

Surmortalité ? **Comment gérer l'hyperdébit ?** Demande énergétique Hypothermie **B-bloquants**

Fever Control Using External Cooling in Septic Shock: a Randomized Controlled Trial

- Body temperature : 36.8 ± 0.7 *vs.* 38.4 ± 1.1°C
- √ 50% vasopressor dose : 54% vs. 20%
- Shock reversal : 86% *vs.* 73%
- Day-14 mortality : 19% vs. 34% (similar at ICU discharge)
- Attention, surmortalité si sepsis + antipyrétique

Schortgen *et al.*, Am J Respir Crit Care Med 2012

Hydrocortisone ? Immunomodulation

- 1. Ne pas utiliser si stabilisation
- 2. Si absence de stabilisation, 200 mg/j
- 3. Pas de test de stimulation
- 4. Décroissance progressive

2 études contradictoires : résultats APPROCHS ?

Dellinger et al., Intensive Care Med 2013

- 9. Glucose control: 45%
- 10. Ventilator setting: 37%
- 11. Sepsis bundle: 34%
- 12. ET Tube cuff pressure: 26%
- 13. Analgesia monitoring: 24%

Variable compliance with clinical practice guidelines identified in a 1-day audit at 66 French adult intensive care units

Leone et al., Crit Care Med 2012

Basiques

- Cristalloïdes
- Antibiotiques
- Noradrénaline
- Eviction du foyer

Monitoring

Vers le futur

Immunostimulation

Hibernation

Microcirculation

Vasopressine : traitement de recours

VASST: AVP + NE = NE

Dellinger *et al.*, Intensive Care Med 2013

AIX*Marseille universite Russell et al., N Engl J Med 2008; Choong et al., Am J Resp Crit Care Med 2009

Vasopressine : traitement de recours

	Experim	ental	Contr	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Albanese 2005	5	10	4	10	2.1%	1.25 [0.47, 3.33]	
Dunser 2003	17	24	17	24	15.0%	1.00 [0.70, 1.44]	
Lauzier 2006	3	13	3	10	1.0%	0.77 [0.20, 3.03]	
Morelli 2008	26	39	14	20	15.0%	0.95 [0.66, 1.37]	
Morelli 2009	15	30	10	15	7.7%	0.75 [0.45, 1.24]	
Russell 2008	140	396	150	382	59.2%	0.90 [0.75, 1.08]	4
Total (95% CI)		512		461	100.0%	0.91 [0.79, 1.05]	•
Total events	206		198				
Heterogeneity: Tau ² = 0.00; Chi ² = 1.36, df = 5 (P = 0.93); $I^2 = 0\%$							
Test for overall effect: $Z = 1.25$ (P = 0.21) Favours experimental Favours control						ours experimental Favours control	

Polito et al., Intensive Care Med 2012

Aix*****Marse

universit

Vasopressine : traitement de recours ?

Vasopressin Compared with Norepinephrine Augments the Decline of Plasma Cytokine Levels in Septic Shock

- 1. Survivants : **↑** clairance des cytokines
- 2. AVP :
 clairance / NE

Immunomodulation et AVP

Aix*****Marseille université

Aix*****Marseille université

Landry et al., N Engl J Med 2001

Défaillance cardiaque

Profound but Reversible Myocardial Depression in Patients with Septic Shock

Aix Marseille

Parker et al., Ann Intern Med 1984

The sepsis seesaw

The immune response goes haywire during sepsis, a deadly condition triggered by infection. Richard S. Hotchkiss and his colleagues take the focus off of the prevailing view that the key aspect of this response is an exuberant inflammatory reaction. They assess recent human studies bolstering the notion that immunosuppression is also a major contributor to the disease. Many people with sepsis succumb to cardiac dysfunction, a process examined by Peter Ward. He showcases the factors that cause cardiomyocyte contractility to wane during the disease.

BEDSIDE TO BENCH Tilting toward immunosuppression

Richard S Hotchkiss, Craig M Coope

Aix*****Marseille

Anergie Immunodépression Temps

Hotchkiss et al., Nat Med 2009

Munoz et al., J Clin Invest 1991

AZUREA

B Cells (CD20), Trauma

B Cells (CD20), Sepsis

No Sepsis Sepsis No Sepsis Sepsis No Sepsis Sepsis

Aix Marseil Otchkiss et al., N Engl J Med 2003; Boomer et al., JAMA 2011

Temps : précoce vs. tardif

Aix*****Marseille

université

Lesur et al., PlosOne 2010

AZUREA

Hotchkiss et al., Lancet Infect Dis 2013

Aix Marseille université

Réponse immune : dépression

Futur : stimuler l'immunité

AIX*Marseille université

Marshall. Nat Rev Drug Disc 2003

HLA-DR

Aix*****Marseille université

Hotchkiss et al. Lancet Infect Dis 2013

Granulocyte–Macrophage Colony-stimulating Factor to Reverse Sepsis-associated Immunosuppression

A Double-Blind, Randomized, Placebo-controlled Multicenter Trial

Ventilation mécanique GM-CSF: 148 ± 103 h VS. Placebo: $207 \pm 57 h$, p = 0.04

Etudes multicentriques en cours

Meisel et al. Am J Respir Crit Care Med 2009

Interleukine 7 ?

IL-7 Promotes T Cell Viability, Trafficking, and Functionality and Improves Survival in Sepsis

Aix Marseille Hotchkiss et al. Lancet Infect Dis 2013; Unsinger et al. J Immunol 2013

Croyance et business

Aix Marseille université

Sepsis

- Dépression myocardique
 Ann Intern Med 1984; 100:483–490
- Baisse contractilité VG
- Mais baisse de postcharge
- Donc le plus souvent pas de congestion

Charpentier et al. Crit Care Med 2004; 32 : 660.

BNP-34 patients en choc septique

NH₂ terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients*

p < 0.05 entre non-survivants (n = 22) et survivants (n=17) à chaque temps

NH₂ terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients*

Roch et Cat Care Med 2005 Vol. 33, No. 5

Table 3. Factors that potentially influenced intensive care unit mortality by univariate analysis^a

	Nonsurvivors	Survivors	p Value
Age, yrs	66 ± 10	60 ± 15	.15
Male sex	18/22	14/17	1.0
SOFA ^o	13 ± 3	9 ± 2	<.001
NT-proBNP, pg/mL ^o			
Median	34028	7856	.002
Interquartile range	11,735-49,320	1,291-12,972	
Lactate, ^b mmol/L	7.5 ± 6	4 ± 3	.034
Creatinine, ^b µmol/L	225 ± 77	161 ± 81	.016
LVSWI, ^c g \cdot m ⁻¹ \cdot m ⁻²	23 ± 10	36 ± 16	.005
cTnI, ^b µg/L			
Median	1.4	0.2	.002
Interquartile range	0.2–3.1	0.03-0.25	

NH₂ terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients* Roch et <u>Paticare Med 2005 Vol. 33, No. 5</u>

Table 4. Multivariate logistic regression of factors influencing intensive care unit mortality

NH₂ terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients* Roch et <u>Paticare Med 2005 Vol. 33, No. 5</u>

